A195314 Centered 28-gonal numbers.
1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, 13021, 13889, 14785, 15709, 16661, 17641, 18649, 19685, 20749, 21841, 22961, 24109, 25285, 26489
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(14*n^2-14*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
-
Mathematica
Table[14n^2-14n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,29,85},50]
-
PARI
a(n)=14*n^2-14*n+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 14*n^2 - 14*n + 1.
G.f.: -x*(1 + 26*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 01 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5/7)*Pi/2)/(2*sqrt(35)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(14*x^2 + 1) - 1.
a(n) = 2*A069127(n) - 1. (End)
Comments