A195315 Centered 32-gonal numbers.
1, 33, 97, 193, 321, 481, 673, 897, 1153, 1441, 1761, 2113, 2497, 2913, 3361, 3841, 4353, 4897, 5473, 6081, 6721, 7393, 8097, 8833, 9601, 10401, 11233, 12097, 12993, 13921, 14881, 15873, 16897, 17953, 19041, 20161, 21313, 22497, 23713, 24961, 26241, 27553, 28897, 30273
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[(16*n^2-16*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
-
Mathematica
Table[16*n^2 - 16*n + 1, {n, 1, 41}] (* Amiram Eldar, Feb 11 2022 *) LinearRecurrence[{3,-3,1},{1,33,97},50] (* Harvey P. Dale, Feb 11 2024 *)
-
PARI
a(n)=16*n^2-16*n+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 16*n^2 - 16*n + 1.
G.f.: -x*(1 + 30*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3)*Pi/4)/(8*sqrt(3)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(16*x^2 + 1) - 1.
a(n) = 2*A069129(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Comments