cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A071294 Number of witnesses for strong pseudoprimality of 2n+1, i.e., number of bases b, 1 <= b <= 2n, in which 2n+1 is a strong pseudoprime.

Original entry on oeis.org

2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 2, 46, 6, 2, 52, 2, 2, 58, 60, 2, 6, 66, 2, 70, 72, 2, 2, 78, 2, 82, 6, 2, 88, 18, 2, 2, 96, 2, 100, 102, 2, 106, 108, 2, 112, 2, 2, 2, 10, 2, 4, 126, 2, 130, 18, 2, 136, 138, 2, 2, 6, 2, 148, 150, 2, 2, 156, 2, 2
Offset: 1

Views

Author

J.-F. Guiffes (guiffes.jean-francois(AT)wanadoo.fr), Jun 11 2002

Keywords

Comments

Number of integers b, 1 <= b <= 2n, such that if 2n = 2^k*m with odd m, then the sequence (b^m, b^(2*m), ..., b^(2^k*m)) modulo 2n+1 satisfies the Rabin-Miller test.
Comments from R. J. Mathar, Jul 03 2012 (Start)
The subsequence related to composite 2n+1 is characterized with records in A195328 and associated 2n+1 tabulated in A141768.
Let N = 2n+1 = product_{i=1..s} p_i^r_i be the prime factorization of the odd 2n+1. Related odd parts q and q_i are defined by N-1=2^k*q and p_i-1 = 2^(k_i)*q_i, with sorting such that k_1 <= k_2 <=k_3... Then a(n) = (1+sum_{j=0..k1-1} 2^(j*s)) *product_{i=1..s} gcd(q,qi).
Reduces to A006093 if 2n+1 is prime.
This might be correlated with 2*A195508(n). (End)

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004, p. 98.

Crossrefs

Programs

  • Maple
    rabinmiller := proc(n,a); k := 0; mu := n-1; while irem(mu,2)=0 do k := k+1; mu := mu/2 od; G := a&^mu mod(n); h := 0; if G=1 then RETURN(1) else while h1 do h := h+1; G := G&^2 mod n; od; if h n-1 then RETURN(0) else RETURN(1) fi; if G=1 then RETURN(1); fi; fi; end; compte := proc(n) local l; RETURN(sum('rabinmiller(2*n+1,l)','l'=1..2*n)); end;
    Maple code from R. J. Mathar, Jul 03 2012 (Start)
    A000265 := proc(n)
         n/2^padic[ordp](n,2) ;
    end proc:
    a := proc(n)
         q := A000265(n-1) ;
         B := 1;
         s := 0 ;
         k1 := 10000000000000 ;
         for pf in ifactors(n)[2] do
             pi := op(1,pf) ;
             qi := A000265(pi-1) ;
             ki := ilog2((pi-1)/qi) ;
             k1 := min(k1,ki) ;
             B := B*igcd(q,qi) ;
             s := s+1 ;
         end do:
         1+add(2^(j*s),j=0..k1-1) ;
         return B*% ;
    end proc:
    seq(a(2*n+1),n=1..60) ;
  • Mathematica
    o[n_] := (n-1)/2^IntegerExponent[n-1, 2]; a[n_?PrimeQ] := n-1; a[n_] := Module[{p = FactorInteger[n][[;;, 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2]& /@ (p - 1)]) - 1)/(2^om - 1))]; Table[a[n], {n, 3, 121, 2}] (* Amiram Eldar, Nov 08 2019 *)

Formula

For k = 2*n+1, a(k) = k - 1 if k is prime, otherwise, a(k) = (1 + 2^(omega(k)*nu(k)) - 1)/(2^omega(k)-1)) * Product_{p|k} gcd(od(k-1), od(p-1)), where omega(m) is the number of distinct prime factors of m (A001221), od(m) is the largest odd divisor of m (A000265) and nu(m) = min_{p|m} A007814(p-1). - Amiram Eldar, Nov 08 2019

Extensions

Edited by Max Alekseyev, Sep 20 2018
Edited by N. J. A. Sloane, Nov 15 2019, merging R. J. Mathar's A182291 with this entry.

A195327 Number of bases to which terms of A194946 are pseudoprime.

Original entry on oeis.org

2, 4, 8, 16, 36, 40, 48, 100, 144, 324, 484, 900, 1296, 1764, 2116, 2704, 3600, 6084, 9216, 13728, 19044, 24336, 30000, 39204, 39360, 44100, 51984, 63888, 72900, 81648, 93636, 108900, 112896, 133956, 142884, 191844, 229376, 248004, 269568, 298116
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    bases(n)=my(f=factor(n)[, 1]); n--; prod(i=1, #f, gcd(f[i]-1, n)) \\ Given a value of A194946, this function transforms it to a term of this sequence.

A329759 Odd composite numbers k for which the number of witnesses for strong pseudoprimality of k equals phi(k)/4, where phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 91, 703, 1891, 8911, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 5481451, 6186403, 6969511
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2019

Keywords

Comments

Odd numbers k such that A071294((k-1)/2) = A000010(k)/4.
For each odd composite number m > 9 the number of witnesses <= phi(m)/4. For numbers in this sequence the ratio reaches the maximal possible value 1/4.
The semiprime terms of this sequence are of the form (2*m+1)*(4*m+1) where 2*m+1 and 4*m+1 are primes and m is odd.

Examples

			15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005, Theorem 3.5.4., p. 136.

Crossrefs

Programs

  • Mathematica
    o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2];
    a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))];
    aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]
Showing 1-3 of 3 results.