A182291 Duplicate of A071294.
2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 2, 46, 6, 2, 52, 2, 2, 58, 60, 2, 6, 66, 2, 70, 72, 2, 2, 78, 2, 82, 6, 2, 88, 18, 2, 2, 96, 2, 100, 102, 2, 106, 108
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
25 is a 1-, 7-, 18- and 24-strong pseudoprime and no odd number less than 25 has four or more bases to which it is a strong pseudoprime.
star(n)={n--;n>>valuation(n,2)}; bases(n)=my(f=factor(n)[,1], nu=valuation(f[1]-1, 2), nn = star(n));for(i=2,#f,nu = min(nu, valuation(f[i] - 1, 2)););(1 + (2^(#f * nu) - 1) / (2^#f - 1)) * prod(i=1, #f, gcd(nn, star(f[i]))); r=0;forstep(n=9,1e8,2,if(isprime(n),next);t=bases(n);if(t>r,r=t;print1(n",")))
For n=38, 2n+1=77; divisors={1,7,11,77}; differences={6,4,66}; a(38) = smallest difference = 4.
a060684 = minimum . a193829_row . (+ 1) . (* 2) -- Reinhard Zumkeller, Jun 25 2015
a[n_ ] := Min@@(Drop[d=Divisors[2n+1], 1]-Drop[d, -1]) Array[Min[Differences[Divisors[2*#+1]]]&,80] (* Harvey P. Dale, Dec 08 2013 *)
a(1) = 2 since there are 2 bases b in which 2*1 + 1 = 3 is an Euler-Jacobi pseudoprime: b = 1 since GCD(1, 3) = 1 and 1^1 == (1 / 3) == 1 (mod 3), and b = 2 since GCD(2, 3) = 1 and 2^1 == (2 / 3) == -1 (mod 3).
v[n_] := Min[IntegerExponent[#, 2]& /@ (FactorInteger[n][[;;, 1]] - 1)]; pQ[n_, p_] := OddQ[IntegerExponent[n, p]] && IntegerExponent[p-1, 2] < IntegerExponent[n-1, 2]; psQ[n_] := AnyTrue[FactorInteger[n][[;;, 1]], pQ[n, #] &]; delta[n_] := If[IntegerExponent[n-1, 2] == v[n], 2, If[psQ[n], 1/2, 1]]; a[n_] := delta[n] * Module[{p = FactorInteger[n][[;;, 1]]}, Product[GCD[(n-1)/2, p[[k]]-1], {k, 1, Length[p]}]]; Table[a[n], {n, 3, 147, 2}]
8911 = 7 * 19 * 67 is a term since it is a Carmichael number, and 7 == 19 == 67 == 3 (mod 4).
aQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]] && AllTrue[ FactorInteger[n][[;;,1]], Mod[#, 4] == 3 &]; Select[Range[2*10^6], aQ]
15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2]; a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))]; aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]
Comments