cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A195328 Number of bases to which terms of A141768 are strong pseudoprimes.

Original entry on oeis.org

2, 4, 6, 18, 50, 54, 162, 242, 450, 486, 882, 1058, 1782, 3042, 3078, 4050, 5202, 9522, 19602, 22050, 36450, 46818, 54450, 66978, 71442, 95922, 124002, 149058, 183618, 190962, 238050, 240570, 263538, 277830, 328050, 466578, 684450, 816642, 977202
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    star(n)={n--; n>>valuation(n, 2)};
    bases(n)=my(f=factor(n)[, 1], nu=valuation(f[1]-1, 2), nn = star(n)); for(i=2, #f, nu = min(nu, valuation(f[i] - 1, 2)); ); (1 + (2^(#f * nu) - 1) / (2^#f - 1)) * prod(i=1, #f, gcd(nn, star(f[i]))); \\ Given a value of A141768, this function transforms it to a term of this sequence.

A129521 Numbers of the form p*q, p and q prime with q=2*p-1.

Original entry on oeis.org

6, 15, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Comments

All terms are Fermat 4-pseudoprimes, i.e., satisfy 4^n == 4 (mod n). See A020136 and A122781.

Crossrefs

Subsequence of A006881, A129510, and A122781.
Intersection of A000384 and A001358, "hexagonal semiprimes". - Wesley Ivan Hurt, Jul 04 2013

Programs

  • Haskell
    a129521 n = p * (2 * p - 1) where p = a005382 n
    -- Reinhard Zumkeller, Nov 10 2013
  • Magma
    [2*n^2-n: n in [0..1000]|IsPrime(n) and IsPrime(2*n-1)]; // Vincenzo Librandi, Dec 27 2010
    
  • Mathematica
    p = Select[Prime[Range[155]], PrimeQ[2# - 1] &]; p (2p - 1) (* Robert G. Wilson v, Sep 11 2011 *)
  • PARI
    forprime(p=2,10000,q=2*p-1;if(isprime(q),print1(p*q,", ")))
    

Formula

a(n) = A005382(n)*A005383(n).

A083876 Least pseudoprime to base 2 through base prime(n).

Original entry on oeis.org

341, 1105, 1729, 29341, 29341, 162401, 252601, 252601, 252601, 252601, 252601, 252601, 1152271, 2508013, 2508013, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 6733693, 6733693, 6733693
Offset: 1

Views

Author

Robert G. Wilson v, May 06 2003

Keywords

Comments

Records: 341, 1105, 1729, 29341, 162401, 252601, 1152271, 2508013, 3828001, 6733693, 17098369, 17236801, 29111881, 82929001, 172947529, 216821881, 228842209, 366652201, .... - Robert G. Wilson v, May 11 2012
Conjecture: for n > 1, a(n) is the smallest Carmichael number k with lpf(k) > prime(n). It seems that such Carmichael numbers have exactly three prime factors. - Thomas Ordowski, Apr 18 2017
The conjecture is true if a(n) < A285549(n) for all n > 1. It holds for all a(n) < 2^64. - Max Alekseyev and Thomas Ordowski, Mar 13 2018
If prime(n) < m < a(n), then m is prime if and only if p^(m-1) == 1 (mod m) for every prime p <= prime(n). - Thomas Ordowski, Mar 05 2018
By this conjecture in the second comment, a(n) <= A135720(n+1), with equality for n > 1 iff a(n) < a(n+1), namely for n = 2, 3, 5, 6, 12, 13, 15, 25, 28, 29, ... For such n, a(n) gives all terms of A300629 > 561. - Thomas Ordowski, Mar 10 2018

Crossrefs

Programs

  • Mathematica
    k = 4; Do[l = Table[ Prime[i], {i, 1, n}]; While[ PrimeQ[k] || Union[PowerMod[l, k - 1, k]] != {1}, k++ ]; Print[k], {n, 1, 29}]
  • PARI
    isps(k, n) = {if (isprime(k), return (0)); my(nbok = 0); for (b=2, prime(n), if (Mod(b, k)^(k-1) == 1, nbok++, break)); if (nbok==prime(n)-1, return (1));}
    a(n) = {my(k=2); while (!isps(k, n), k++); return (k);} \\ Michel Marcus, Apr 27 2018

A071294 Number of witnesses for strong pseudoprimality of 2n+1, i.e., number of bases b, 1 <= b <= 2n, in which 2n+1 is a strong pseudoprime.

Original entry on oeis.org

2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 2, 46, 6, 2, 52, 2, 2, 58, 60, 2, 6, 66, 2, 70, 72, 2, 2, 78, 2, 82, 6, 2, 88, 18, 2, 2, 96, 2, 100, 102, 2, 106, 108, 2, 112, 2, 2, 2, 10, 2, 4, 126, 2, 130, 18, 2, 136, 138, 2, 2, 6, 2, 148, 150, 2, 2, 156, 2, 2
Offset: 1

Views

Author

J.-F. Guiffes (guiffes.jean-francois(AT)wanadoo.fr), Jun 11 2002

Keywords

Comments

Number of integers b, 1 <= b <= 2n, such that if 2n = 2^k*m with odd m, then the sequence (b^m, b^(2*m), ..., b^(2^k*m)) modulo 2n+1 satisfies the Rabin-Miller test.
Comments from R. J. Mathar, Jul 03 2012 (Start)
The subsequence related to composite 2n+1 is characterized with records in A195328 and associated 2n+1 tabulated in A141768.
Let N = 2n+1 = product_{i=1..s} p_i^r_i be the prime factorization of the odd 2n+1. Related odd parts q and q_i are defined by N-1=2^k*q and p_i-1 = 2^(k_i)*q_i, with sorting such that k_1 <= k_2 <=k_3... Then a(n) = (1+sum_{j=0..k1-1} 2^(j*s)) *product_{i=1..s} gcd(q,qi).
Reduces to A006093 if 2n+1 is prime.
This might be correlated with 2*A195508(n). (End)

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004, p. 98.

Crossrefs

Programs

  • Maple
    rabinmiller := proc(n,a); k := 0; mu := n-1; while irem(mu,2)=0 do k := k+1; mu := mu/2 od; G := a&^mu mod(n); h := 0; if G=1 then RETURN(1) else while h1 do h := h+1; G := G&^2 mod n; od; if h n-1 then RETURN(0) else RETURN(1) fi; if G=1 then RETURN(1); fi; fi; end; compte := proc(n) local l; RETURN(sum('rabinmiller(2*n+1,l)','l'=1..2*n)); end;
    Maple code from R. J. Mathar, Jul 03 2012 (Start)
    A000265 := proc(n)
         n/2^padic[ordp](n,2) ;
    end proc:
    a := proc(n)
         q := A000265(n-1) ;
         B := 1;
         s := 0 ;
         k1 := 10000000000000 ;
         for pf in ifactors(n)[2] do
             pi := op(1,pf) ;
             qi := A000265(pi-1) ;
             ki := ilog2((pi-1)/qi) ;
             k1 := min(k1,ki) ;
             B := B*igcd(q,qi) ;
             s := s+1 ;
         end do:
         1+add(2^(j*s),j=0..k1-1) ;
         return B*% ;
    end proc:
    seq(a(2*n+1),n=1..60) ;
  • Mathematica
    o[n_] := (n-1)/2^IntegerExponent[n-1, 2]; a[n_?PrimeQ] := n-1; a[n_] := Module[{p = FactorInteger[n][[;;, 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2]& /@ (p - 1)]) - 1)/(2^om - 1))]; Table[a[n], {n, 3, 121, 2}] (* Amiram Eldar, Nov 08 2019 *)

Formula

For k = 2*n+1, a(k) = k - 1 if k is prime, otherwise, a(k) = (1 + 2^(omega(k)*nu(k)) - 1)/(2^omega(k)-1)) * Product_{p|k} gcd(od(k-1), od(p-1)), where omega(m) is the number of distinct prime factors of m (A001221), od(m) is the largest odd divisor of m (A000265) and nu(m) = min_{p|m} A007814(p-1). - Amiram Eldar, Nov 08 2019

Extensions

Edited by Max Alekseyev, Sep 20 2018
Edited by N. J. A. Sloane, Nov 15 2019, merging R. J. Mathar's A182291 with this entry.

A181782 Odd composite numbers n that are strong pseudoprimes to some base a, 2 <= a <= n-2.

Original entry on oeis.org

25, 49, 65, 85, 91, 121, 125, 133, 145, 169, 175, 185, 205, 217, 221, 231, 247, 259, 265, 289, 301, 305, 325, 341, 343, 361, 365, 377, 385, 403, 425, 427, 435, 445, 451, 469, 475, 481, 485, 493, 505, 511, 529, 533, 545, 553, 559, 561, 565, 589, 595, 625, 629, 637, 645, 651, 671, 679, 685, 689, 697
Offset: 1

Views

Author

Karsten Meyer, Nov 10 2010

Keywords

Examples

			49 is a strong pseudoprime to the bases 18, 19, 30 and 31, so 49 is in the sequence.
		

Crossrefs

Cf. A141768.

Programs

  • PARI
    /* function sppq() from http://www.jjj.de/pari/rabinmiller.gpi */
    sppq(n,a)=
    { /* Return whether n is a strong pseudoprime to base a (Rabin Miller) */
        local(q, t, b, e);
        q = n-1;  t = 0;  while ( 0==bitand(q,1), q\=2; t+=1 );
        /* here  n==2^t*q+1 */
        b = Mod(a, n)^q;
        if ( 1==b, return(1) );
        e = 1;
        while ( eJoerg Arndt, Dec 27 2010 */
    
  • PARI
    select( is_A181782(n)={bittest(n,0) && !isprime(n) && for(a=2,n-2, my(t=valuation(n-1,2), b=Mod(a,n)^(n>>t)); b==1&&return(1); while(t-->0 && b!=-1 && b!=1, b=b^2); b==-1&&return(1))}, [1..700]) \\ Defines is_A181782(): select(...) gives a check and illustration for free. Inside the for loop is the exact equivalent of the sppq() function above. - M. F. Hasler, Nov 26 2018

Extensions

Definition corrected by Max Alekseyev, Nov 12 2010
Terms corrected by Joerg Arndt, Dec 27 2010

A194946 Odd non-Carmichael numbers with increasing numbers of bases to which they are pseudoprimes.

Original entry on oeis.org

9, 15, 45, 65, 91, 231, 325, 341, 481, 703, 1541, 1891, 2701, 5461, 6533, 8321, 11041, 12403, 18721, 30889, 38503, 49141, 68101, 79003, 88561, 88831, 104653, 137149, 146611, 176149, 188191, 218791, 226801, 269011, 286903, 385003, 493697, 497503, 563473
Offset: 1

Views

Author

Keywords

Comments

A141768 is the analog using the Rabin-Miller test rather than the Fermat test. The infinitude of that sequence implies that this sequence is likewise infinite.

Crossrefs

Cf. A195327 (number of bases).
Cf. A141768.

Programs

  • PARI
    bases(n)=my(f=factor(n)[,1]);n--;prod(i=1,#f,gcd(f[i]-1,n))
    Korselt(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    r=0;p=5;forprime(q=7,1e7,forstep(n=p+2,q-2,2,if(bases(n)>r&&!Korselt(n), r=bases(n);print1(n", ")));p=q) \\ Charles R Greathouse IV, Sep 14 2011

A090659 Odd composites with increasing proportion of nontrivial non-witnesses of compositeness by the Miller-Rabin primality test.

Original entry on oeis.org

25, 91, 703, 1891, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1056331, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 6186403, 6969511, 8086231, 9080191
Offset: 1

Views

Author

Ken Takusagawa, Dec 14 2003

Keywords

Comments

Rabin has shown that the proportion has an upper bound of 0.25. If the trivial non-witnesses are counted, this upper bound is reached at 9. If the conjecture is true that the later terms are always the product of two primes p and (2*p-1), then the sequence continues 188191 218791 269011 286903 385003 497503 597871 736291 765703 954271 1056331 1314631 1869211 2741311 3270403 3913003 4255903 4686391 5292631.
Dickson's conjecture implies that this sequence is infinite. Can this be proved unconditionally? - Charles R Greathouse IV, Mar 10 2011
Higgins' conjecture 2 is implied by his conjecture 1, which is true by the general form of the number of non-witnesses of an odd number. - Charles R Greathouse IV, Mar 10 2011

Examples

			25 has 2 nontrivial non-witnesses (NTNW), namely (7,18), for a proportion of 2/22=0.0909. The denominator is 22 because the non-witnesses are selected from 2..23 (as 1 and 24 are trivial non-witnesses).
49 has 4 NTNW, namely (18,19,30,31) for a proportion of 4/46=0.0870. This is a smaller proportion than 0.0909 for 25.
91=7*13 has 16 NTNW in the range [2..89], namely [9, 10, 12, 16, 17, 22, 29, 38, 53, 62, 69, 74, 75, 79, 81, 82], for a proportion of 16/88=0.182. It also has two trivial non-witnesses 1 and 90, which are not counted. The next integer with a higher proportion is 703, with 160 nontrivial non-witnesses and proportion 0.229.
		

Crossrefs

Subsequence of A141768.

Extensions

Extended and edited by Charles R Greathouse IV, Mar 09 2011

A254139 a(n) = smallest composite c for which there exist exactly n bases b with b < c such that b^(c-1) == 1 (mod c), i.e., smallest composite c which is a Fermat pseudoprime to exactly n bases less than c.

Original entry on oeis.org

9, 28, 15, 66, 49, 232, 45, 190, 121, 276, 169, 1106
Offset: 1

Views

Author

Felix Fröhlich, Jan 26 2015

Keywords

Comments

a(13) > 150000.

Examples

			With c = 49: there are exactly five bases b with b < 49 such that 49 is a Fermat pseudoprime, namely 18, 19, 30, 31 and 48. Since 49 is the smallest composite having exactly five such bases, a(5) = 49.
		

Crossrefs

Programs

  • PARI
    for(n=1, 20, forcomposite(c=3, , b=2; i=0; while(b < c, if(Mod(b, c)^(c-1)==1, i++); b++); if(i==n, print1(c, ", "); break({1}))))

A329759 Odd composite numbers k for which the number of witnesses for strong pseudoprimality of k equals phi(k)/4, where phi is the Euler totient function (A000010).

Original entry on oeis.org

15, 91, 703, 1891, 8911, 12403, 38503, 79003, 88831, 146611, 188191, 218791, 269011, 286903, 385003, 497503, 597871, 736291, 765703, 954271, 1024651, 1056331, 1152271, 1314631, 1869211, 2741311, 3270403, 3913003, 4255903, 4686391, 5292631, 5481451, 6186403, 6969511
Offset: 1

Views

Author

Amiram Eldar, Nov 20 2019

Keywords

Comments

Odd numbers k such that A071294((k-1)/2) = A000010(k)/4.
For each odd composite number m > 9 the number of witnesses <= phi(m)/4. For numbers in this sequence the ratio reaches the maximal possible value 1/4.
The semiprime terms of this sequence are of the form (2*m+1)*(4*m+1) where 2*m+1 and 4*m+1 are primes and m is odd.

Examples

			15 is in the sequence since out of the phi(15) = 8 numbers 1 <= b < 15 that are coprime to 15, i.e., b = 1, 2, 4, 7, 8, 11, 13, and 14, 8/4 = 2 are witnesses for the strong pseudoprimality of 15: 1 and 14.
		

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, 2nd ed., Springer, 2005, Theorem 3.5.4., p. 136.

Crossrefs

Programs

  • Mathematica
    o[n_] := (n - 1)/2^IntegerExponent[n - 1, 2];
    a[n_?PrimeQ] := n - 1; a[n_] := Module[{p = FactorInteger[n][[;; , 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2] & /@ (p - 1)]) - 1)/(2^om - 1))];
    aQ[n_] := CompositeQ[n] && a[n] == EulerPhi[n]/4; s = Select[Range[3, 10^5, 2], aQ]
Showing 1-9 of 9 results.