cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A348258 Records in A083876.

Original entry on oeis.org

341, 1105, 1729, 29341, 162401, 252601, 1152271, 2508013, 3828001, 6733693, 17098369, 17236801, 29111881, 82929001, 172947529, 216821881, 228842209, 366652201, 413138881, 2301745249, 2438403661, 5255104513, 5781222721, 8251854001, 12173703001, 13946829751, 15906120889, 23224518901
Offset: 1

Views

Author

Robert G. Wilson v, Oct 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[1] = 341; f[2] = 1105; f[3] = 1729; f[n_] := f[n] = Block[{k = f[n -1], lp = Prime@ Range[2, n -1], p = Prime@ n}, While[ PrimeQ@ k || PowerMod[2, k -1, k] != 1 || PowerMod[p, k -1, k] != 1 || Union[ PowerMod[lp, k -1, k]] != {1}, k += 2]; k]; Union[ Table[ f@n, {n, 1012}]]

A285549 Smallest weak pseudoprime to all natural bases up to prime(n) that is not a Carmichael number.

Original entry on oeis.org

341, 2701, 721801, 721801, 42702661, 1112103541, 2380603501, 5202153001, 17231383261, 251994268081, 1729579597021, 55181730338101, 142621888086541, 242017633321201, 242017633321201, 242017633321201, 1174858593838021, 1174858593838021, 168562580058457201, 790489610041255741, 790489610041255741, 790489610041255741
Offset: 1

Views

Author

Thomas Ordowski, Apr 21 2017

Keywords

Comments

a(n) is the smallest composite k such that p^k == p (mod k) for every prime p <= A000040(n) and A002322(k) does not divide k-1.
If a composite m < a(n) and p^m == p (mod m) for every prime p <= prime(n), then m is a Carmichael number.
a(23) > 2^64. - Max Alekseyev, Apr 22 2017
Conjecture: lpf(a(n)) > prime(n), where lpf = A020639. - Thomas Ordowski, May 13 2017
Except a(19), the listed terms are semiprime. - Thomas Ordowski, Feb 09 2018
a(24) <= 21150412877533909683421, a(362) <= (416*A002110(360) + 1) * (832*A002110(360) + 1). - Daniel Suteu, Nov 13 2022

Crossrefs

Extensions

a(5)-a(9) from Giovanni Resta, Apr 21 2017
a(10)-a(22) from Max Alekseyev, Apr 22 2017

A271221 Smallest Fermat pseudoprime k to all bases b = 2, 3, 4, ..., n.

Original entry on oeis.org

341, 1105, 1105, 1729, 1729, 29341, 29341, 29341, 29341, 29341, 29341, 162401, 162401, 162401, 162401, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601, 252601
Offset: 2

Views

Author

Felix Fröhlich, Apr 02 2016

Keywords

Comments

a(n) is the smallest composite k such that b^(k-1) == 1 (mod (b-1)k) for every b = 2, 3, 4, ..., n. For more comments, see A083876 and A300629. - Max Alekseyev and Thomas Ordowski, Apr 29 2018

Crossrefs

Programs

  • PARI
    a(n) = forcomposite(c=1, , my(i=0); for(b=2, n, if(Mod(b, c)^(c-1)==1, i++)); if(i==n-1, return(c)));

Extensions

Edited by Thomas Ordowski, Apr 29 2018
Corrected a typo within the initial terms by Jens Ahlström, Apr 23 2024

A300629 a(1) = 561; a(n+1) = smallest Fermat pseudoprime to all natural bases up to lpf(a(n)).

Original entry on oeis.org

561, 1105, 1729, 29341, 162401, 252601, 1152271, 2508013, 3828001, 6733693, 17098369, 17236801, 29111881, 82929001, 172947529, 216821881, 228842209, 366652201, 413138881, 2301745249, 2438403661, 5255104513, 5781222721, 8251854001, 12173703001, 13946829751, 15906120889, 23224518901, 31876135201, 51436355851, 57274147841, 58094662081
Offset: 1

Views

Author

Thomas Ordowski, Mar 10 2018

Keywords

Comments

It is sufficient to consider only prime bases: a(n+1) is the least composite number k such that p^(k-1) == 1 (mod k) for every prime p <= lpf(a(n)), with a(1) = 561.
Conjecture: a(n+1) is the smallest Carmichael number k such that lpf(k) > lpf(a(n)), with a(1) = 561. It seems that such Carmichael numbers have exactly three prime factors.
The above conjecture is true if A083876(n) < A285549(n) for all n > 1, but has not been proven; there is no counterexample up to a(n) < 2^64. - Max Alekseyev and Thomas Ordowski, Mar 13 2018
Carl Pomerance (in a letter to the author) wrote, Mar 13 2018: (Start)
Assuming a strong form of the prime k-tuples conjecture, if there are no small counterexamples, there are likely to be none.
Here's why.
Assuming prime k-tuples, there are infinitely many Carmichael numbers of the form (6k+1)(12k+1)(18k+1), where each factor is prime. And from Bateman-Horn, these are fairly thickly distributed. There are other even better triples such as (60k+41)(90k+61)(150k+101), where "better" means the least prime factor is not so far below the cube root.
So, to get into the sequence, a number needs to be a Fermat pseudoprime for every base up to nearly the cube root.
However, it's a theorem that a sufficiently large number with this property must be a Carmichael number. (End)
Theorem: if lpf(a(n)) < m < a(n), then m is prime if and only if p^(m-1) == 1 (mod m) for every prime p <= lpf(a(n)). - Thomas Ordowski, Mar 13 2018
lpf(a(n)) are listed in A300748. - Max Alekseyev, Mar 13 2018
For m > 1, A135720(m) >= A083876(m-1), with equality iff lpf(a(n)) = prime(m); by this conjecture in the second comment. - Thomas Ordowski, Mar 13 2018

Crossrefs

Subsequence of A087788 and of A135720.

A007324 Least number for which Solovay-Strassen primality test on bases < prime(n) fails.

Original entry on oeis.org

9, 561, 1729, 1729, 399001, 399001, 1857241, 1857241, 6189121, 14469841, 14469841, 14469841
Offset: 1

Views

Author

N. J. A. Sloane, Eric Bach (bach(AT)cs.wisc.edu)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    a(n) = my(b, p=factorback(primes(n-1))); forcomposite(k=9, oo, if(gcd(k, p)==1, b=2; while(Mod(b, k)^(k\2) == kronecker(b, k), b++); if(b>=prime(n), return(k)))); \\ Jinyuan Wang, Jun 04 2022

Extensions

Offset changed to 1 and a(1) corrected by Jinyuan Wang, Jun 04 2022

A300748 Least prime divisor of A300629(n).

Original entry on oeis.org

3, 5, 7, 13, 17, 41, 43, 53, 101, 109, 113, 151, 211, 281, 307, 331, 337, 461, 617, 727, 739, 827, 1033, 1301, 1481, 1531, 1723, 1901, 2161, 2351, 2381, 2633, 2647, 2801, 3371, 3931, 4933, 5653, 5743, 6791, 6917, 7561, 8059, 9521, 10369, 11503, 11551, 12161, 17579, 17839, 18433, 20593, 21061, 23581, 26731, 30241
Offset: 1

Views

Author

Max Alekseyev, Mar 11 2018

Keywords

Comments

For m > 2, A135720(m) = A083876(m-1) if and only if a(n) = prime(m).

Crossrefs

Formula

a(n) = A020639(A300629(n)).

A237266 The n-th base 2 pseudoprime is also a pseudoprime to base 2 through base prime(a(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 5, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 2, 1, 5, 1, 1, 3, 1
Offset: 1

Views

Author

Lei Zhou, Feb 05 2014

Keywords

Comments

Pseudoprime A001567(n) is a pseudoprime to base 2 through base prime(a(n)), where a(n) is this sequence.

Examples

			n=1, A001567[1]=341. 341 is base 2 pseudoprime but not base 3 pesudoprime.  Since Prime(1)=2, a(1)=1;
...
n=6, A001567[1]=1729. 1729 is base 2, 3, 5 pseudoprimes but not base 7 pesudoprime.  Since Prime(3)=5, a(6)=5.
		

Crossrefs

Programs

  • Mathematica
    p = 1; fi = {}; While[Length[fi] < 87, p = p + 2; If[! PrimeQ[p], ct = 0; q = 2; While[c = q^(p - 1); Mod[c, p] == 1, q = NextPrime[q]]; If[q > 2, q = PrimePi[NextPrime[q, -1]]; AppendTo[fi, q]]]]; Print[fi]

A321790 a(n) is the smallest base a > 2 such that a^(k-1) != 1 (mod k), where k = A001567(n), the n-th Fermat pseudoprime to base 2.

Original entry on oeis.org

3, 3, 3, 5, 3, 7, 3, 3, 5, 5, 7, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 7, 3, 5, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 5, 3, 3, 3, 3, 13, 3, 3, 3, 3, 5, 3, 3, 3, 3, 7, 3, 3, 13, 5, 3, 7, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 11, 3, 5, 5, 3, 3, 3, 5, 5, 3, 5, 7, 5, 5, 3, 13, 3, 3
Offset: 1

Views

Author

Thomas Ordowski, Nov 19 2018

Keywords

Comments

a(n) <= A177415(n).
Each a(n) is an odd prime.
If k = A001567(n) is a Carmichael number, then a(n) = lpf(k).
Conjecture: if k = A001567(n) is semiprime, then a(n) < lpf(k).
The smallest numbers k = A001567(n) such that a(n) = prime(m) for m > 1 are 341, 1105, 1729, 75361, 29341, 162401, 334153, ... See A135720 > 561.
The smallest such semiprimes are 341, 2701, ?, 721801, ... Cf. A285549.

Examples

			The first Fermat pseudoprime to base 2 is 341, and 341 is not a Fermat pseudoprime to base 3, so a(1) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[p_] := Module[{m=3}, While[Mod[m^(p-1), p] == 1, m++]; m]; psp = Select[Range[3, 1000000, 2], CompositeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &]; Map[a, psp] (* Amiram Eldar, Nov 19 2018 *)

Extensions

More terms from Amiram Eldar, Nov 19 2018

A354694 Least Euler pseudoprime to base 2 through base prime(n).

Original entry on oeis.org

341, 1729, 1729, 46657, 46657, 162401, 399001, 399001, 399001, 399001, 488881, 3057601, 3057601, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 3828001, 17098369, 17098369, 17098369, 17098369, 17236801, 17236801
Offset: 1

Views

Author

Jinyuan Wang, Jun 04 2022

Keywords

Comments

a(n) is coprime to A002110(n).

Crossrefs

Programs

  • PARI
    a(n) = my(b, m, p=factorback(primes(n))); forcomposite(k=9, oo, if(gcd(k, p)==1, b=2; while((m=Mod(b, k)^(k\2)) == 1 || m == k-1, b++); if(b>prime(n), return(k))));
Showing 1-9 of 9 results.