cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060680 Smallest difference between consecutive divisors of n.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 2, 1, 22, 1, 4, 1, 2, 1, 28, 1, 30, 1, 2, 1, 2, 1, 36, 1, 2, 1, 40, 1, 42, 1, 2, 1, 46, 1, 6, 1, 2, 1, 52, 1, 4, 1, 2, 1, 58, 1, 60, 1, 2, 1, 4, 1, 66, 1, 2, 1, 70, 1, 72, 1, 2, 1, 4, 1, 78, 1, 2, 1, 82, 1, 4, 1, 2, 1, 88, 1, 6, 1, 2, 1, 4
Offset: 2

Views

Author

Labos Elemer, Apr 19 2001

Keywords

Comments

a(n) = 1 if n is even and a(n) is even if n is odd.
a(n) = least m>0 such that n!+1+m and n-m are not relatively prime. - Clark Kimberling, Jul 21 2012

Examples

			For n = 35, divisors = {1,5,7,35}; differences = {4,2,28}; a(35) = smallest difference = 2.
		

Crossrefs

Cf. A060681 (largest difference), A060682, A060683, A060684.

Programs

  • Haskell
    a060680 = minimum . a193829_row  -- Reinhard Zumkeller, Jun 25 2015
    
  • Maple
    read("transforms") :
    A060680 := proc(n)
        sort(convert(numtheory[divisors](n),list)) ;
        DIFF(%) ;
        min(op(%)) ;
    end proc:
    seq(A060680(n),n=2..60) ; # R. J. Mathar, May 23 2018
  • Mathematica
    a[n_] := Min@@(Drop[d=Divisors[n], 1]-Drop[d, -1]);
    (* Second program: *)
    a[n_] := Min[Differences[Divisors[n]]];
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Oct 16 2024 *)
  • PARI
    a(n) = {my(m = n, d1); fordiv(n, d, if(d > 1 && d - d1 < m, m = d - d1); d1 = d); m;} \\ Amiram Eldar, Mar 17 2025

Formula

a(2n+1) = A060684(n).

Extensions

Corrected by David W. Wilson, May 04 2001
Edited by Dean Hickerson, Jan 22 2002

A071294 Number of witnesses for strong pseudoprimality of 2n+1, i.e., number of bases b, 1 <= b <= 2n, in which 2n+1 is a strong pseudoprime.

Original entry on oeis.org

2, 4, 6, 2, 10, 12, 2, 16, 18, 2, 22, 4, 2, 28, 30, 2, 2, 36, 2, 40, 42, 2, 46, 6, 2, 52, 2, 2, 58, 60, 2, 6, 66, 2, 70, 72, 2, 2, 78, 2, 82, 6, 2, 88, 18, 2, 2, 96, 2, 100, 102, 2, 106, 108, 2, 112, 2, 2, 2, 10, 2, 4, 126, 2, 130, 18, 2, 136, 138, 2, 2, 6, 2, 148, 150, 2, 2, 156, 2, 2
Offset: 1

Views

Author

J.-F. Guiffes (guiffes.jean-francois(AT)wanadoo.fr), Jun 11 2002

Keywords

Comments

Number of integers b, 1 <= b <= 2n, such that if 2n = 2^k*m with odd m, then the sequence (b^m, b^(2*m), ..., b^(2^k*m)) modulo 2n+1 satisfies the Rabin-Miller test.
Comments from R. J. Mathar, Jul 03 2012 (Start)
The subsequence related to composite 2n+1 is characterized with records in A195328 and associated 2n+1 tabulated in A141768.
Let N = 2n+1 = product_{i=1..s} p_i^r_i be the prime factorization of the odd 2n+1. Related odd parts q and q_i are defined by N-1=2^k*q and p_i-1 = 2^(k_i)*q_i, with sorting such that k_1 <= k_2 <=k_3... Then a(n) = (1+sum_{j=0..k1-1} 2^(j*s)) *product_{i=1..s} gcd(q,qi).
Reduces to A006093 if 2n+1 is prime.
This might be correlated with 2*A195508(n). (End)

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, 2nd ed., Springer-Verlag, New York, 2004, p. 98.

Crossrefs

Programs

  • Maple
    rabinmiller := proc(n,a); k := 0; mu := n-1; while irem(mu,2)=0 do k := k+1; mu := mu/2 od; G := a&^mu mod(n); h := 0; if G=1 then RETURN(1) else while h1 do h := h+1; G := G&^2 mod n; od; if h n-1 then RETURN(0) else RETURN(1) fi; if G=1 then RETURN(1); fi; fi; end; compte := proc(n) local l; RETURN(sum('rabinmiller(2*n+1,l)','l'=1..2*n)); end;
    Maple code from R. J. Mathar, Jul 03 2012 (Start)
    A000265 := proc(n)
         n/2^padic[ordp](n,2) ;
    end proc:
    a := proc(n)
         q := A000265(n-1) ;
         B := 1;
         s := 0 ;
         k1 := 10000000000000 ;
         for pf in ifactors(n)[2] do
             pi := op(1,pf) ;
             qi := A000265(pi-1) ;
             ki := ilog2((pi-1)/qi) ;
             k1 := min(k1,ki) ;
             B := B*igcd(q,qi) ;
             s := s+1 ;
         end do:
         1+add(2^(j*s),j=0..k1-1) ;
         return B*% ;
    end proc:
    seq(a(2*n+1),n=1..60) ;
  • Mathematica
    o[n_] := (n-1)/2^IntegerExponent[n-1, 2]; a[n_?PrimeQ] := n-1; a[n_] := Module[{p = FactorInteger[n][[;;, 1]]}, om = Length[p]; Product[GCD[o[n], o[p[[k]]]], {k, 1, om}] * (1 + (2^(om * Min[IntegerExponent[#, 2]& /@ (p - 1)]) - 1)/(2^om - 1))]; Table[a[n], {n, 3, 121, 2}] (* Amiram Eldar, Nov 08 2019 *)

Formula

For k = 2*n+1, a(k) = k - 1 if k is prime, otherwise, a(k) = (1 + 2^(omega(k)*nu(k)) - 1)/(2^omega(k)-1)) * Product_{p|k} gcd(od(k-1), od(p-1)), where omega(m) is the number of distinct prime factors of m (A001221), od(m) is the largest odd divisor of m (A000265) and nu(m) = min_{p|m} A007814(p-1). - Amiram Eldar, Nov 08 2019

Extensions

Edited by Max Alekseyev, Sep 20 2018
Edited by N. J. A. Sloane, Nov 15 2019, merging R. J. Mathar's A182291 with this entry.

A060700 "Anomalous" numbers k such that for even numbers 2k, gcd(2k, lcm(dd(2k)))=2k and not k, where dd(2k) is the first difference set of divisors of 2k.

Original entry on oeis.org

15, 30, 35, 45, 63, 70, 75, 77, 91, 99, 105, 117, 126, 135, 140, 143, 150, 153, 154, 165, 175, 182, 187, 189, 195, 198, 209, 221, 225, 231, 234, 245, 247, 252, 255, 273, 280, 285, 286, 297, 299, 306, 308, 315, 323, 325, 330, 345, 350, 351, 357, 364, 374, 375
Offset: 1

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			63 is here because for 126 = 2*63, lcm(dd(126)) = lcm(1, 1, 3, 1, 2, 5, 4, 3, 21, 21, 63) = 1260, so gcd(126, lcm(dd(126))) = gcd(126, 1260) = 126.
		

Crossrefs

Programs

  • PARI
    f(n) = {my(d = divisors(n), dd = vector(#d-1, k, d[k+1] - d[k])); gcd(n, lcm(dd));}
    isok(n) = (f(2*n) == 2*n); \\ Michel Marcus, Mar 29 2018
Showing 1-3 of 3 results.