cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195437 Triangle formed by: 1 even, 2 odd, 3 even, 4 odd... starting with 2.

Original entry on oeis.org

2, 5, 7, 10, 12, 14, 17, 19, 21, 23, 26, 28, 30, 32, 34, 37, 39, 41, 43, 45, 47, 50, 52, 54, 56, 58, 60, 62, 65, 67, 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 90, 92, 94, 96, 98, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 122, 124, 126, 128, 130, 132
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 12 2011

Keywords

Comments

A127366(T(n,k)) mod 2 = 1;
T(n,k) mod 2 + A000196(T(n,k)) mod 2 = 1;
complement of A133280.

Crossrefs

Cf. A002522 (left edge), A008865 (right edge), A011379 (row sums), A002939 (central terms).

Programs

  • Haskell
    a195437 n k = a195437_tabl !! n !! k
    a195437_tabl = tail $ g 1 1 [0..] where
       g m j xs = (filter ((== m) . (`mod` 2)) ys) : g (1 - m) (j + 2) xs'
         where (ys,xs') = splitAt j xs
    b195437 = bFile' "A195437" (concat $ take 101 a195437_tabl) 0
    -- Reinhard Zumkeller, Nov 23 2011 (fixed), Oct 12 2011
  • Mathematica
    p[n_,k_]:=NestList[#+2&,n,k-1]; Module[{nn=6,ev,od},ev=p@@@Partition[Riffle[Table[ 4n^2-4n+2,{n,nn}],Range[ 1,2nn,2]],2];od=p@@@Partition[Riffle[Table[4n^2+1,{n,nn}],Range[ 2,2nn+1,2]],2];Sort[Flatten[Join[ev,od]]]] (* Harvey P. Dale, Aug 27 2023 *)