A195441 a(n) = denominator(Bernoulli_{n+1}(x) - Bernoulli_{n+1}).
1, 1, 2, 1, 6, 2, 6, 3, 10, 2, 6, 2, 210, 30, 6, 3, 30, 10, 210, 42, 330, 30, 30, 30, 546, 42, 14, 2, 30, 2, 462, 231, 3570, 210, 6, 2, 51870, 2730, 210, 42, 2310, 330, 2310, 210, 4830, 210, 210, 210, 6630, 1326, 858, 66, 330, 110, 798, 114, 870, 30, 30, 6
Offset: 0
Keywords
Links
- Peter Luschny, Table of n, a(n) for n = 0..10000 (terms 0..1000 from G. C. Greubel)
- Olivier Bordellès, Florian Luca, Pieter Moree, and Igor E. Shparlinski, Denominators of Bernoulli polynomials, Mathematika 64 (2018), 519-541.
- Harald Hofstätter, Denominators of coefficients of the Baker-Campbell-Hausdorff series, arXiv:2010.03440 [math.NT], 2020. Mentions this sequence.
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Julia
using Nemo, Primes function A195441(n::Int) n < 4 && return ZZ([1,1,2,1][n+1]) P = primes(2, div(n+2, 2+n%2)) prod([ZZ(p) for p in P if p <= sum(digits(n+1, base=p))]) end println([A195441(n) for n in 0:59]) # Peter Luschny, May 14 2017
-
Maple
A195441 := n -> denom(bernoulli(n+1, x)-bernoulli(n+1)): seq(A195441(i),i=0..59); # Formula of Kellner and Sondow: a := proc(n) local s; s := (p,n) -> add(i,i=convert(n,base,p)); select(isprime,[$2..(n+2)/(2+irem(n,2))]); mul(i,i=select(p->s(p,n+1)>=p,%)) end: seq(a(n), n=0..59); # Peter Luschny, May 14 2017
-
Mathematica
a[n_] := Denominator[Together[(BernoulliB[n + 1, x] - BernoulliB[n + 1])]]; Table[a[n], {n, 0, 59}] (* Jonathan Sondow, Nov 20 2015 *) SD[n_, p_] := If[n < 1 || p < 2, 0, Plus @@ IntegerDigits[n, p]]; DD[n_] := Times @@ Select[Prime[Range[PrimePi[(n+2)/(2+Mod[n, 2])]]], SD[n+1, #] >= # &]; Table[DD[n], {n, 0, 59}] (* Bernd C. Kellner, Oct 18 2023 *)
-
PARI
a(n) = {my(vp = Vec(bernpol(n+1, x)-bernfrac(n+1))); lcm(vector(#vp, k, denominator(vp[k])));} \\ Michel Marcus, Feb 08 2016
-
Python
from math import prod from sympy.ntheory.factor_ import primerange, digits def A195441(n): return prod(p for p in primerange((n+2)//(2|n&1)+1) if sum(digits(n+1,p)[1:])>=p) # Chai Wah Wu, Oct 04 2023
-
Sage
A195441 = lambda n: mul([p for p in (2..(n+2)//(2+n%2)) if is_prime(p) and sum((n+1).digits(base=p))>=p]) print([A195441(n) for n in (0..59)]) # Peter Luschny, May 14 2017
Formula
a(n) = A064538(n)/(n+1). - Jonathan Sondow, Nov 12 2015
From Bernd C. Kellner, Oct 18 2023: (Start)
Note that the formulas here are shifted in index by 1 due to the definition of a(n) using index n+1!
a(n-1) = lcm(a(n), rad(n+1)), if n >= 3 is odd.
If n+1 is composite, then rad(n+1) divides a(n-1).
If m is a Carmichael number (A002997), then m divides both a(m-1) and a(m-2).
See papers of Kellner and Kellner & Sondow. (End)
Extensions
Definition simplified by Jonathan Sondow, Nov 20 2015
Comments