A195573
Hypotenuses of primitive Pythagorean triples in A195571 and A195572.
Original entry on oeis.org
1, 41, 61, 101, 4181, 6221, 10301, 426421, 634481, 1050601, 43490761, 64710841, 107151001, 4435631201, 6599871301, 10928351501, 452390891741, 673122161861, 1114584702101, 46139435326381, 68651860638521, 113676711262801
Offset: 1
A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A195571
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/5.
Original entry on oeis.org
1, 40, 60, 99, 4100, 6100, 10101, 418140, 622160, 1030199, 42646200, 63454200, 105070201, 4349494240, 6471706260, 10716130299, 443605766300, 660050584300, 1092940220301, 45243438668340, 67318687892360, 111469186340399, 4614387138404400
Offset: 1
-
r = 1/5; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195571, A195572 *)
Sqrt[a^2 + b^2] (* A195573 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Showing 1-3 of 3 results.
Comments