cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195584 O.g.f.: exp( Sum_{n>=1} (sigma(2*n^2)-sigma(n^2)) * x^n/n ).

Original entry on oeis.org

1, 2, 6, 18, 42, 102, 238, 522, 1130, 2394, 4926, 9978, 19890, 38942, 75254, 143598, 270506, 504126, 929926, 1698322, 3074010, 5516898, 9820550, 17349554, 30430610, 53007162, 91734262, 157771538, 269734714, 458542822, 775281982, 1303971722, 2182227546, 3634444634
Offset: 0

Views

Author

Paul D. Hanna, Sep 20 2011

Keywords

Comments

Compare g.f. to the formula for Jacobi theta_4(x) given by:
theta_4(x) = exp( Sum{n>=1} -(sigma(2*n)-sigma(n))*x^n/n )
where theta_4(x) = 1 + Sum_{n>=1} 2*(-x)^(n^2).
Here sigma(n) = A000203(n) is the sum of divisors of n.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 18*x^3 + 42*x^4 + 102*x^5 + 238*x^6 +...
where
log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 +...+ A195585(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2*n^2] - DivisorSigma[1, n^2])*(x^n/n), {n, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^2)-sigma(m^2))*x^m/m)+x*O(x^n)), n)}

Formula

O.g.f.: exp( Sum_{n>=1} A054785(n^2)*x^n/n ), where exp( Sum_{n>=1} A054785(n)*x^n/n ) = 1/(1+2*Sum_{n>=1} (-x)^(n^2)), which is the g.f. of A015128.