cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A215603 O.g.f.: exp( Sum_{n>=1} -(sigma(2*n^2) - sigma(n^2)) * (-x)^n/n ).

Original entry on oeis.org

1, 2, -2, 2, 10, -10, 6, 10, -22, 58, -58, 10, 114, -210, 270, -242, 74, 382, -930, 1474, -1542, 1010, 446, -2798, 5682, -7718, 8030, -5182, -998, 11126, -23802, 35626, -42246, 39450, -20810, -15546, 69514, -133770, 194918, -234106, 227410, -147706, -19738, 282234
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2012

Keywords

Comments

Compare to the Jacobi theta_3 function:
1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).
Here sigma(n) = A000203(n) is the sum of divisors of n.

Examples

			O.g.f.: A(x) = 1 + 2*x - 2*x^2 + 2*x^3 + 10*x^4 - 10*x^5 + 6*x^6 + 10*x^7 +...
where
log(A(x)) = 2*x - 8*x^2/2 + 26*x^3/3 - 32*x^4/4 + 62*x^5/5 - 104*x^6/6 + 114*x^7/7 - 128*x^8/8 + 242*x^9/9 - 248*x^10/10 + 266*x^11/11 - 416*x^12/12 +...+ -A054785(n^2)*(-x)^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n,-(sigma(2*m^2)-sigma(m^2))*(-x)^m/m)+x^2*O(x^n)),n)}
    for(n=0,50,print1(a(n),", "))

Formula

O.g.f.: exp( Sum_{n>=1} -A054785(n^2)*(-x)^n/n ), where A054785(n^2) = A195585(n).

A225957 O.g.f.: exp( Sum_{n>=1} -(sigma(2*n^3) - sigma(n^3)) * (-x)^n/n ).

Original entry on oeis.org

1, 2, -6, 12, 38, -108, 148, 168, -922, 2294, -2656, -1732, 17908, -44516, 60896, -6936, -206474, 650848, -1181394, 1146324, 865832, -6609592, 16632596, -26643544, 22498916, 23275482, -144152248, 349896736, -563311472, 532552508, 233516176, -2378435472, 6264582710
Offset: 0

Views

Author

Paul D. Hanna, May 21 2013

Keywords

Comments

Compare to the Jacobi theta_3 function:
1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).
Here sigma(n) = A000203(n), the sum of the divisors of n.

Examples

			O.g.f.: A(x) = 1 + 2*x - 6*x^2 + 12*x^3 + 38*x^4 - 108*x^5 + 148*x^6 + 168*x^7 +...
where
log(A(x)) = 2*x - 8*x^2/2 + 26*x^3/3 - 32*x^4/4 + 62*x^5/5 - 104*x^6/6 + 114*x^7/7 - 128*x^8/8 + 242*x^9/9 - 248*x^10/10 + 266*x^11/11 - 416*x^12/12 +...+ -(-1)^n*A054785(n^3)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, -(sigma(2*m^3)-sigma(m^3))*(-x)^m/m)+x^2*O(x^n)), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

O.g.f.: exp( Sum_{n>=1} -A054785(n^3)*(-x)^n/n ).

A225958 O.g.f.: exp( Sum_{n>=1} (sigma(2*n^3) - sigma(n^3)) * x^n/n ).

Original entry on oeis.org

1, 2, 10, 44, 134, 468, 1524, 4584, 13862, 40566, 114880, 321052, 879092, 2360156, 6248864, 16297384, 41902454, 106437600, 267149022, 662979572, 1628437160, 3960377672, 9541519732, 22786066280, 53958062564, 126750346970, 295476011176, 683776368416, 1571299804688
Offset: 0

Views

Author

Paul D. Hanna, May 21 2013

Keywords

Comments

Compare to the Jacobi theta_3 function:
1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).
Here sigma(n) = A000203(n), the sum of the divisors of n.

Examples

			O.g.f.: A(x) = 1 + 2*x + 10*x^2 + 44*x^3 + 134*x^4 + 468*x^5 + 1524*x^6 +...
where
log(A(x)) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 + 114*x^7/7 + 128*x^8/8 + 242*x^9/9 + 248*x^10/10 + 266*x^11/11 +...+ A054785(n^3)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^3)-sigma(m^3))*x^m/m)+x^2*O(x^n)), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

O.g.f.: exp( Sum_{n>=1} A054785(n^3)*x^n/n ).
Logarithmic derivative equals A225959.

A195585 sigma(2*n^2) - sigma(n^2).

Original entry on oeis.org

2, 8, 26, 32, 62, 104, 114, 128, 242, 248, 266, 416, 366, 456, 806, 512, 614, 968, 762, 992, 1482, 1064, 1106, 1664, 1562, 1464, 2186, 1824, 1742, 3224, 1986, 2048, 3458, 2456, 3534, 3872, 2814, 3048, 4758, 3968, 3446, 5928, 3786, 4256, 7502, 4424, 4514, 6656, 5602, 6248, 7982
Offset: 1

Views

Author

Paul D. Hanna, Sep 20 2011

Keywords

Examples

			L.g.f.: L(x) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 +...
where the g.f. of A195584 begins:
exp(L(x)) = 1 + 2*x + 6*x^2 + 18*x^3 + 42*x^4 + 102*x^5 + 238*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1,2n^2]-DivisorSigma[1,n^2],{n,60}] (* Harvey P. Dale, May 05 2021 *)
  • PARI
    {a(n)=sigma(2*n^2)-sigma(n^2)}

Formula

Equals the logarithmic derivative of A195584.
a(n) = A054785(n^2), where A054785 is the logarithmic derivative of A015128, which is the number of overpartitions of n.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 7*zeta(3)/Pi^2 = 0.85255679763501158184... . - Amiram Eldar, Mar 17 2024

A219430 Number of overpartitions of n^2; a(n) = A015128(n^2).

Original entry on oeis.org

1, 2, 14, 154, 2062, 31066, 504886, 8652402, 154208270, 2832526306, 53287424374, 1022143389578, 19924535352374, 393685747760714, 7869272950148382, 158875743754158098, 3235672769357219854, 66405081412501161442, 1372115409786911859502, 28524372351269271839610
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2012

Keywords

Comments

Limit a(n+1)/a(n) = exp(Pi) = 23.14069263...
a(n) ~ (cosh(Pi*n) - sinh(Pi*n)/(Pi*n)) / (4*n^2), a "remarkable approximation" due to "Ramanujan's false statement" (see formula 12 in "Jagged partitions" link).
By definition of A015128, an overpartition of n^2 is an ordered sequence of nonincreasing integers that sum to n^2, where the first occurrence of each integer may be overlined (see Hirschhorn and Sellers link).

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 154*x^3 + 2062*x^4 + 31066*x^5 + 504886*x^6 +...
It appears that the logarithmic derivative of the g.f. A(x),
A'(x)/A(x) = 2 + 24*x + 386*x^2 + 6832*x^3 + 128442*x^4 + 2505720*x^5 + 50153770*x^6 + 1022997344*x^7 + 21170657906*x^8 +...+ A219431(n+1)*x^n +...
is congruent to 2/(1-x^2) mod 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[n^2-k]*PartitionsQ[k], {k, 0, n^2}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 28 2015 *)
  • PARI
    /* Formula: a(n) = [x^(n^2)] 1 / theta_4(x) */
    {a(n)=polcoeff(1/(1+2*sum(k=1,n,(-x)^(k^2))+x*O(x^(n^2))),n^2)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* Formula: a(n) = -2*Sum_{k=1..n} (-1)^k * A015128(n^2-k^2) */
    {A015128(n)=polcoeff(1/(1+2*sum(k=1, sqrtint(n+1), (-x)^(k^2))+x*O(x^(n))), n)}
    {a(n)=if(n==0,1,-2*sum(k=1, n, (-1)^k*A015128(n^2-k^2)))}
    for(n=0, 25, print1(a(n), ", "))

Formula

a(n) = -2*Sum_{k=1..n} (-1)^k * A015128(n^2-k^2) for n>0 with a(0)=1.
a(n) = [x^(n^2)] 1 / ( Sum_{m=-inf..inf} (-x)^(m^2) ).
a(n) = [x^(n^2)] 1 / theta_4(x).
a(n) = [x^(n^2)] eta(x^2) / eta(x)^2.
a(n) = [x^(n^2)] Product_{m>=1} (1 + x^m) / (1 - x^m).
a(n) = [x^(n^2)] Product_{m>=1} 1 / ( (1 - x^(2*m)) * (1 - x^(2*m-1))^2 ).
a(n) = [x^(n^2)] exp( Sum_{m>=1} 2*x^(2*m-1)/(1 - x^(2*m-1))/(2*m-1) ).
a(n) = [x^(n^2)] exp( Sum_{m>=1} (sigma(2*m) - sigma(m)) * x^m/m ).

A224902 O.g.f.: exp( Sum_{n>=1} (sigma(2*n^4) - sigma(n^4)) * x^n/n ).

Original entry on oeis.org

1, 2, 18, 114, 450, 2298, 10466, 43314, 184402, 749490, 2942274, 11437026, 43364818, 161089130, 589901682, 2123791130, 7531395154, 26360805018, 91057065522, 310718196626, 1048405959266, 3499152601394, 11559430074418, 37818135048962, 122582070331106, 393830310786706, 1254654362883954
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2013

Keywords

Comments

Compare to the Jacobi theta_3 function:
1 + 2*Sum_{n>=1} x^(n^2) = exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*(-x)^n/n ).
Here sigma(n) = A000203(n), the sum of the divisors of n.

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 114*x^3 + 450*x^4 + 2298*x^5 +...
where
log(A(x)) = 2*x + 32*x^2/2 + 242*x^3/3 + 512*x^4/4 + 1562*x^5/5 +...+ A224903(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m^4)-sigma(m^4))*x^m/m)+x^2*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

O.g.f.: exp( Sum_{n>=1} A054785(n^4)*x^n/n ).
Logarithmic derivative equals A224903.
a(n) == 2 (mod 4) for n>0 (conjecture).
Showing 1-6 of 6 results.