cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195585 sigma(2*n^2) - sigma(n^2).

Original entry on oeis.org

2, 8, 26, 32, 62, 104, 114, 128, 242, 248, 266, 416, 366, 456, 806, 512, 614, 968, 762, 992, 1482, 1064, 1106, 1664, 1562, 1464, 2186, 1824, 1742, 3224, 1986, 2048, 3458, 2456, 3534, 3872, 2814, 3048, 4758, 3968, 3446, 5928, 3786, 4256, 7502, 4424, 4514, 6656, 5602, 6248, 7982
Offset: 1

Views

Author

Paul D. Hanna, Sep 20 2011

Keywords

Examples

			L.g.f.: L(x) = 2*x + 8*x^2/2 + 26*x^3/3 + 32*x^4/4 + 62*x^5/5 + 104*x^6/6 +...
where the g.f. of A195584 begins:
exp(L(x)) = 1 + 2*x + 6*x^2 + 18*x^3 + 42*x^4 + 102*x^5 + 238*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1,2n^2]-DivisorSigma[1,n^2],{n,60}] (* Harvey P. Dale, May 05 2021 *)
  • PARI
    {a(n)=sigma(2*n^2)-sigma(n^2)}

Formula

Equals the logarithmic derivative of A195584.
a(n) = A054785(n^2), where A054785 is the logarithmic derivative of A015128, which is the number of overpartitions of n.
Sum_{k=1..n} a(k) ~ c * n^3, where c = 7*zeta(3)/Pi^2 = 0.85255679763501158184... . - Amiram Eldar, Mar 17 2024