A195596 Decimal expansion of alpha, the unique solution on [2,oo) of the equation alpha*log((2*e)/alpha)=1.
4, 3, 1, 1, 0, 7, 0, 4, 0, 7, 0, 0, 1, 0, 0, 5, 0, 3, 5, 0, 4, 7, 0, 7, 6, 0, 9, 6, 4, 4, 6, 8, 9, 0, 2, 7, 8, 3, 9, 1, 5, 6, 2, 9, 9, 8, 0, 4, 0, 2, 8, 8, 0, 5, 0, 6, 6, 9, 3, 7, 8, 8, 4, 4, 4, 6, 2, 4, 8, 2, 9, 5, 7, 4, 9, 5, 1, 4, 1, 6, 6, 4, 6, 0, 1, 4, 9, 5, 6, 4, 3, 9, 4, 4, 1, 4, 4, 9, 0, 9, 6, 6, 9, 0, 1
Offset: 1
Examples
4.31107040700100503504707609644689027839156299804028805066937...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.13 Binary search tree constants, p. 352.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Luc Devroye, A note on the height of binary search trees, Journal of the ACM, Vol. 33, No. 3 (1986), pp. 489-498.
- Bruce Reed, The height of a random binary search tree, J. ACM, 50 (2003), 306-332.
- John Michael Robson, The height of binary search trees, Australian Computer Journal, Vol. 11, No. 4 (1979), pp. 151-153. [broken link]
- Larry Shepp, Doron Zeilberger and Cun-Hui Zhang, Pick up sticks, arXiv preprint arXiv:1210.5642 [math.CO] (2012).
- Wikipedia, Binary search tree
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha): as:= convert(evalf(alpha/10, 130), string): seq(parse(as[n+1]), n=1..120);
-
Mathematica
RealDigits[ -1/ProductLog[-1/(2*E)] , 10, 105] // First (* Jean-François Alcover, Feb 19 2013 *)
Comments