A195599 Decimal expansion of beta = 3/(2*log(alpha/2)), where alpha = A195596.
1, 9, 5, 3, 0, 2, 5, 7, 0, 3, 3, 5, 8, 1, 5, 4, 1, 3, 9, 4, 5, 4, 0, 6, 2, 8, 8, 5, 4, 2, 5, 7, 5, 3, 8, 0, 4, 1, 4, 2, 5, 1, 3, 4, 0, 2, 0, 1, 0, 3, 6, 3, 1, 9, 6, 0, 9, 3, 5, 4, 2, 8, 8, 1, 8, 0, 6, 9, 6, 0, 7, 9, 7, 2, 3, 3, 6, 2, 5, 2, 5, 6, 9, 7, 5, 2, 1, 8, 9, 2, 9, 5, 3, 3, 5, 3, 1, 5, 1, 9, 7, 3, 2, 3, 1
Offset: 1
Examples
1.95302570335815413945406288542575380414251340201036319609354...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- B. Reed, The height of a random binary search tree, J. ACM, 50 (2003), 306-332.
- Wikipedia, Binary search tree
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha): beta:= 3/(2*log(alpha/2)): bs:= convert(evalf(beta/10, 130), string): seq(parse(bs[n+1]), n=1..120);
-
Mathematica
RealDigits[ 3/(2 + 2*ProductLog[-1/(2*E)]) , 10, 105] // First (* Jean-François Alcover, Feb 19 2013 *)
Comments