cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195601 Engel expansion of beta = 3/(2*log(alpha/2)); alpha = A195596.

Original entry on oeis.org

1, 2, 2, 2, 2, 5, 5, 5, 20, 36, 78, 842, 5291, 10373, 17340, 28619, 35586, 93572, 98045, 2470364, 13603654, 14328528, 16490766, 833971648, 1788088151, 9592330101, 10952282168, 40005288076, 54302548920, 118523737357, 776601533408, 1241894797770, 24485470725324
Offset: 1

Views

Author

Alois P. Heinz, Sep 21 2011

Keywords

Comments

beta = 1.95302570335815413945406288542575380414251340201036319609354... is used to measure the expected height of random binary search trees.
Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A195599 (decimal expansion), A195600 (continued fraction), A195581, A195582, A195583, A195596, A195597, A195598.

Programs

  • Maple
    alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
    beta:= 3/(2*log(alpha/2)):
    engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    Digits:=400: engel(evalf(beta), 39);
  • Mathematica
    f:= N[-1/ProductLog[-1/(2*E)], 500001]; EngelExp[A_, n_]:= Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; EngelExp[N[3/(2*Log[f/2]), 500000], 25] (* G. C. Greubel, Oct 21 2016 *)

Formula

beta = 3/(2*log(alpha/2)) = 3*alpha/(2*alpha-2), where alpha = A195596 = -1/W(-exp(-1)/2) and W is the Lambert W function.
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1).