A195619 Denominators of Pythagorean approximations to 4.
16, 1040, 68640, 4529184, 298857520, 19720067120, 1301225572416, 85861167712320, 5665535843440720, 373839504499375184, 24667741761115321440, 1627697116729111839840, 107403341962360266108016, 7086992872399048451289200
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..549
- Index entries for linear recurrences with constant coefficients, signature (65,65,-1).
Programs
-
Magma
I:=[16, 1040, 68640]; [n le 3 select I[n] else 65*Self(n-1) +65*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
Mathematica
r = 4; z = 20; p[{f_, n_}] := (#1[[2]]/#1[[ 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ Array[FromContinuedFraction[ ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; {a, b} = ({Denominator[#1], Numerator[#1]} &)[ p[{r, z}]] (* A195619, A195620 *) Sqrt[a^2 + b^2] (* A078988 *) (* Peter J. C. Moses, Sep 02 2011 *) Table[(LucasL[2*n+1,8] - 8*(-1)^n)/34, {n,40}] (* G. C. Greubel, Feb 13 2023 *) LinearRecurrence[{65,65,-1},{16,1040,68640},20] (* Harvey P. Dale, May 01 2023 *)
-
PARI
Vec(16*x/((x+1)*(x^2-66*x+1)) + O(x^20)) \\ Colin Barker, Jun 03 2015
-
SageMath
A078989=BinaryRecurrenceSequence(66,-1,1,67) [4*(A078989(n) - (-1)^n)/17 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
Formula
From Colin Barker, Jun 03 2015: (Start)
a(n) = 65*a(n-1) + 65*a(n-2) - a(n-3).
G.f.: 16*x/((1+x)*(1-66*x+x^2)). (End)
a(n) = ((4+sqrt(17))^(2*n+1) + (4-sqrt(17))^(2*n+1) - 8*(-1)^n)/34. - Colin Barker, Mar 03 2016
a(n) = 4*(A078989(n) - (-1)^n)/17. - G. C. Greubel, Feb 13 2023
Comments