A195692 Decimal expansion of arccos(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).
9, 0, 4, 5, 5, 6, 8, 9, 4, 3, 0, 2, 3, 8, 1, 3, 6, 4, 1, 2, 7, 3, 1, 6, 7, 9, 5, 6, 6, 1, 9, 5, 8, 7, 2, 1, 4, 3, 1, 0, 9, 4, 5, 6, 0, 9, 6, 1, 6, 0, 5, 0, 6, 7, 6, 5, 5, 9, 9, 8, 4, 5, 3, 3, 4, 9, 9, 2, 9, 2, 1, 3, 7, 6, 4, 0, 4, 5, 2, 1, 7, 6, 0, 6, 1, 1, 0, 5, 8, 1, 5, 0, 1, 4, 7, 7, 3, 9, 8, 7, 3, 1, 2, 9, 7
Offset: 0
Examples
arccos(1/phi) = 0.904556894302381364127316795661958721... cos(0.904556894302381364127316795661958721...) = 1/(golden ratio) = 0.618... sec(0.904556894302381364127316795661958721...) = (golden ratio) = 1.618...
Links
- Erica Choi, Dan Ismailescu, Jiho Lee and Joonsoo Lee, Grid dissections of tangential quadrilaterals, arXiv:1908.02251 [math.MG], 2019.
- Duane W. DeTemple, The Triangle of Smallest Perimeter which Circumscribes a Semicircle, The Fibonacci Quarterly, Vol. 30, No. 3 (1992), p. 274.
- Index entries for transcendental numbers
Programs
-
Mathematica
r = 1/GoldenRatio; N[ArcCos[r], 100] RealDigits[%]
-
PARI
acos(2/(sqrt(5)+1)) \\ Charles R Greathouse IV, Nov 21 2024
Formula
From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A175288.
Equals arcsin(1/sqrt(phi)).
Equals arctan(sqrt(phi)). (End)
Extensions
Terms replaced with intended terms by Rick L. Shepherd, Jan 30 2013
Comments