cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195693 Decimal expansion of arctan(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

5, 5, 3, 5, 7, 4, 3, 5, 8, 8, 9, 7, 0, 4, 5, 2, 5, 1, 5, 0, 8, 5, 3, 2, 7, 3, 0, 0, 8, 9, 2, 6, 8, 5, 2, 0, 0, 3, 5, 0, 2, 3, 8, 2, 2, 7, 0, 0, 7, 1, 6, 3, 2, 3, 3, 3, 8, 2, 6, 9, 6, 0, 3, 7, 1, 6, 8, 5, 5, 1, 6, 9, 4, 8, 8, 6, 8, 1, 3, 9, 7, 0, 0, 6, 7, 0, 8, 5, 6, 4, 3, 4, 3, 0, 8, 5, 3, 2, 0, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Radian measure of half the smaller angle in the golden rhombus. - Eric W. Weisstein, Dec 11 2018
The angle between the diagonal and the longer side of a golden rectangle. - Amiram Eldar, May 18 2021

Examples

			arctan(1/phi) = 0.5535743588970452515085327300892685200... .
tan(0.5535743588970452515085327300...) = 1/(golden ratio).
cot(0.5535743588970452515085327300...) = (golden ratio).
		

Crossrefs

Programs

  • Mathematica
    (See also A195692.)
    RealDigits[ArcCot[GoldenRatio], 10, 100][[1]] (* or *) RealDigits[(Pi - ArcTan[4/3])/4, 10, 100][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
  • PARI
    atan(2)/2 \\ Michel Marcus, Feb 05 2022

Formula

Equals Pi/2 - A195723. - Amiram Eldar, May 18 2021
Equals arctan(2)/2. - Christoph B. Kassir, Dec 04 2021
From Amiram Eldar, Jan 11 2022: (Start)
Equals arccot(phi).
Equals (Pi - arctan(phi^5))/3.
Equals (Pi - arctan(4/3))/4.
Equals Sum_{k>=1} ((-1)^(k+1) * arctan(1/Fibonacci(2*k))) (Bruckman, 1999). (End)
Equals Sum_{k>=1} arctan(1/Lucas(2*k)) (Hoggatt and Bruggles, 1964). - Amiram Eldar, Feb 05 2022

A175288 Decimal expansion of the minimal positive constant x satisfying (cos(x))^2 = sin(x).

Original entry on oeis.org

6, 6, 6, 2, 3, 9, 4, 3, 2, 4, 9, 2, 5, 1, 5, 2, 5, 5, 1, 0, 4, 0, 0, 4, 8, 9, 5, 9, 7, 7, 7, 9, 2, 7, 2, 0, 6, 6, 7, 4, 9, 0, 1, 3, 8, 7, 2, 5, 9, 4, 7, 8, 4, 2, 8, 3, 1, 4, 7, 3, 8, 4, 2, 8, 0, 3, 9, 7, 8, 9, 8, 9, 3, 7, 9, 0, 5, 9, 2, 8, 1, 7, 0, 7, 9, 0, 6, 8, 3, 1, 1, 6, 9, 5, 8, 1, 1, 3, 5, 2, 5, 9, 7, 7, 6
Offset: 0

Views

Author

R. J. Mathar, Mar 23 2010, Mar 29 2010

Keywords

Comments

This is the angle (in radians) at which the modified loop curve x^4=x^2*y-y^2 returns to the origin. Writing the curve in (r,phi) circular coordinates, r = sin(phi) * (cos^2(phi)-sin(phi)) /cos^4(phi), the two values of r=0 are phi=0 and the value of phi defined here. The equivalent angle of the Bow curve is Pi/4.
Also the minimum positive solution to tan(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014

Examples

			x = 0.66623943.. = 38.1727076... degrees.
		

Crossrefs

Programs

  • Mathematica
    r = 1/GoldenRatio;
    N[ArcSin[r], 100]
    RealDigits[%]  (* A175288 *)
    RealDigits[x/.FindRoot[Cos[x]^2==Sin[x],{x,.6}, WorkingPrecision->120]] [[1]] (* Harvey P. Dale, Nov 08 2011 *)
    RealDigits[ ArcCos[ Sqrt[ (Sqrt[5] - 1)/2]], 10, 105] // First (* Jean-François Alcover, Feb 19 2013 *)

Formula

x = arcsin(A094214). cos(x)^2 = sin(x) = 0.618033988... = A094214.
From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A195692.
Equals arccos(1/sqrt(phi)).
Equals arctan(1/sqrt(phi)) = arccot(sqrt(phi)). (End)
Root of the equation cos(x) = tan(x). - Vaclav Kotesovec, Mar 06 2022

Extensions

Disambiguated the curve here from the Mathworld bow curve - R. J. Mathar, Mar 29 2010

A195694 Decimal expansion of arccos(-1/r), where r = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

2, 2, 3, 7, 0, 3, 5, 7, 5, 9, 2, 8, 7, 4, 1, 1, 8, 7, 4, 3, 3, 5, 3, 2, 6, 5, 8, 7, 6, 1, 7, 5, 4, 4, 1, 6, 2, 7, 6, 6, 0, 7, 4, 8, 3, 8, 4, 1, 3, 5, 0, 0, 7, 5, 3, 3, 1, 8, 9, 4, 6, 1, 3, 8, 9, 5, 7, 8, 8, 7, 1, 9, 2, 5, 2, 2, 1, 6, 3, 7, 8, 1, 0, 2, 1, 9, 2, 4, 2, 4, 3, 8, 4, 0, 6, 3, 9, 6, 6, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Let c1 and c2 be the constants at A195692 and A195694; then c1+c2 = Pi.

Examples

			arccos(-1/r) = 2.2370357592874118743353265876175441...
		

Crossrefs

Programs

A342571 Decimal expansion of the surface area of a golden ellipsoid with semi-axes lengths 1, 1 and phi (A001622).

Original entry on oeis.org

1, 7, 9, 8, 0, 7, 9, 7, 4, 3, 4, 1, 0, 4, 7, 7, 3, 4, 2, 1, 5, 2, 4, 5, 4, 9, 5, 9, 0, 4, 3, 9, 6, 3, 8, 8, 2, 0, 4, 2, 6, 5, 9, 3, 5, 0, 6, 0, 0, 7, 3, 9, 8, 3, 9, 3, 1, 0, 3, 2, 3, 4, 8, 7, 8, 1, 2, 8, 3, 0, 6, 7, 3, 4, 6, 6, 7, 3, 3, 5, 5, 7, 3, 3, 3, 9, 2
Offset: 2

Views

Author

Amiram Eldar, Mar 27 2021

Keywords

Examples

			17.9807974341047734215245495904396388204265935060073...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[SurfaceArea[Ellipsoid[{0,0,0},{1,1,GoldenRatio}]], 10, 100][[1]]
    (* requires Mathematica 12+, or *)
    RealDigits[2*Pi*(1 + GoldenRatio/Sinc[ArcCos[1/GoldenRatio]]), 10, 100][[1]]

Formula

Equals 2*Pi*(1 + phi*c/sin(c)), where c = arccos(1/phi) (A195692).
Equals 2*Pi*(1 + sqrt(2+sqrt(5))*arcsec(phi)).
Showing 1-4 of 4 results.