cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A197133 Decimal expansion of least x>0 having sin(x) = sin(2*x)^2.

Original entry on oeis.org

2, 7, 2, 9, 7, 1, 8, 4, 9, 2, 3, 6, 8, 2, 4, 9, 5, 0, 4, 0, 8, 6, 1, 6, 8, 0, 6, 0, 8, 3, 8, 6, 9, 8, 3, 1, 0, 4, 7, 4, 0, 6, 6, 5, 1, 9, 6, 6, 4, 4, 0, 1, 8, 2, 7, 6, 6, 8, 0, 0, 0, 1, 1, 4, 8, 4, 3, 3, 5, 9, 2, 7, 0, 1, 0, 2, 2, 0, 8, 9, 0, 4, 3, 5, 9, 2, 4, 4, 8, 6, 4, 3, 1, 9, 4, 0, 5, 6, 9, 0, 8
Offset: 0

Views

Author

Clark Kimberling, Oct 12 2011

Keywords

Comments

The Mathematica program includes a graph.
Guide for least x>0 satisfying sin(b*x) = sin(c*x)^2 for selected numbers b and c:
b.....c.......x
1.....2.......A197133
1.....3.......A197134
1.....4.......A197135
1.....5.......A197251
1.....6.......A197252
1.....7.......A197253
1.....8.......A197254
2.....1.......A105199, x=arctan(2)
2.....3.......A019679, x=Pi/12
2.....4.......A197255
2.....5.......A197256
2.....6.......A197257
2.....7.......A197258
2.....8.......A197259
3.....1.......A197260
3.....2.......A197261
3.....4.......A197262
3.....5.......A197263
3.....6.......A197264
3.....7.......A197265
3.....8.......A197266
4.....1.......A197267
4.....2.......A195693, x=arctan(1/(golden ratio))
4.....3.......A197268
1.....4*Pi....A197522
1.....3*Pi....A197571
1.....2*Pi....A197572
1.....3*Pi/2..A197573
1.....Pi......A197574
1.....Pi/2....A197575
1.....Pi/3....A197326
1.....Pi/4....A197327
1.....Pi/6....A197328
2.....Pi/3....A197329
2.....Pi/4....A197330
2.....Pi/6....A197331
3.....Pi/3....A197332
3.....Pi/6....A197375
3.....Pi/4....A197333
1.....1/2.....A197376
1.....1/3.....A197377
1.....2/3.....A197378
Pi....1.......A197576
Pi....2.......A197577
Pi....3.......A197578
2*Pi..1.......A197585
3*Pi..1.......A197586
4*Pi..1.......A197587
Pi/2..1.......A197579
Pi/2..2.......A197580
Pi/2..1/2.....A197581
Pi/3..Pi/4....A197379
Pi/3..Pi/6....A197380
Pi/4..Pi/3....A197381
Pi/4..Pi/6....A197382
Pi/6..Pi/3....A197383
Pi/6..Pi/4..........., x=1
Pi/3..1.......A197384
Pi/3..2.......A197385
Pi/3..3.......A197386
Pi/3..1/2.....A197387
Pi/3..1/3.....A197388
Pi/3..2/3.....A197389
Pi/4..1.......A197390
Pi/4..2.......A197391
Pi/4..3.......A197392
Pi/4..1/2.....A197393
Pi/4..1/3.....A197394
Pi/4..2/3.....A197411
Pi/4..1/4.....A197412
Pi/6..1.......A197413
Pi/6..2.......A197414
Pi/6..3.......A197415
Pi/6..1/2.....A197416
Pi/6..1/3.....A197417
Pi/6..2/3.....A197418
Cf. A197476 for a similar table for sin(b*x) = sin(c*x)^2.

Examples

			0.272971849236824950408616...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 2; f[x_] := Sin[x]
    t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t] (* A197133 *)
    Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi}]
    (* Second program: *)
    RealDigits[ ArcSec[ Root[16 - 16 x^2 + x^6, 3]], 10, 100] // First (* Jean-François Alcover, Feb 19 2013 *)
  • PARI
    asin(2*sin(asin(3*sqrt(3)/8)/3)/sqrt(3)) \\ Gleb Koloskov, Sep 15 2021
    
  • PARI
    asin(polrootsreal(4*x^3-4*x+1)[2]) \\ Charles R Greathouse IV, Feb 12 2025

Formula

From Gleb Koloskov, Sep 15 2021: (Start)
Equals arcsin(2*sin(arcsin(3*sqrt(3)/8)/3)/sqrt(3))
= arcsin(2*sin(arcsin(A333322)/3)/A002194). (End)

Extensions

Edited and a(99) corrected by Georg Fischer, Jul 28 2021

A105199 Decimal expansion of arctan(2).

Original entry on oeis.org

1, 1, 0, 7, 1, 4, 8, 7, 1, 7, 7, 9, 4, 0, 9, 0, 5, 0, 3, 0, 1, 7, 0, 6, 5, 4, 6, 0, 1, 7, 8, 5, 3, 7, 0, 4, 0, 0, 7, 0, 0, 4, 7, 6, 4, 5, 4, 0, 1, 4, 3, 2, 6, 4, 6, 6, 7, 6, 5, 3, 9, 2, 0, 7, 4, 3, 3, 7, 1, 0, 3, 3, 8, 9, 7, 7, 3, 6, 2, 7, 9, 4, 0, 1, 3, 4, 1, 7, 1, 2, 8, 6, 8, 6, 1, 7, 0, 6, 4, 1, 4, 3, 4, 5, 4
Offset: 1

Views

Author

Bryan Jacobs (bryanjj(AT)gmail.com), Apr 12 2005

Keywords

Comments

arctan(2) + A073000 = Pi/2.
arctan(2) is the (minimal) central angle of a regular icosahedron, which is the platonic solid having 20 faces and 12 vertices. The (minimal) central angle is AOB, where A and B are any neighboring pair of vertices and O is the center. To evaluate AOB, it is helpful to start with 12 vertices: (0,c*t,d), (d,0,c*t), (c*t,d,0) where c=(1 or -1) and d=(1 or -1) and t is the golden ratio, (1+sqrt(5))/2. For neighboring vertices, one can select (t,1,0) and (0,t,1). - Clark Kimberling, Feb 10 2009
Lesser interior angle (in radians) of a golden rhombus; i.e., either of the angles bisected by the longer diagonal. A137218 is the greater interior angle. - Rick L. Shepherd, Apr 10 2017
The apex angle in the isosceles triangle that is the triangle with angles A, B and C in which the maximum values of sin(A) + sin(B)*sin(C) is attained. The maximum value is phi (A001622) (Rabinowitz, 2007). - Amiram Eldar, Aug 04 2022
Also <5_1> in Conway et al. (1999). - Eric W. Weisstein, Nov 06 2024

Examples

			1.107148717794090503017065460...
		

Crossrefs

Cf. A137218 (larger interior angle of the golden rhombus).

Programs

  • Mathematica
    RealDigits[ArcTan[2], 10, 105][[1]] (* Indranil Ghosh, Apr 10 2017 *)
  • PARI
    default(realprecision, 120);
    atan(2) \\ Rick L. Shepherd, Apr 10 2017

Formula

Equals Sum_{k>=1} arctan(8k/(4k^4+5)). [Boros and Moll, from R. J. Mathar, Apr 12 2010]
Equals 2*A195693. - Rick L. Shepherd, Apr 10 2017
Equals arcsin(2/sqrt(5)) = arccos(1/sqrt(5)). - Amiram Eldar, Aug 04 2022
Equals 2 - log(5) + (Integral_{x=0..2} log(1 + x^2) dx)/2. - Vaclav Kotesovec, Oct 06 2023
Equals 3*A197292 = A197376/2. - Hugo Pfoertner, Nov 06 2024

Extensions

Offset corrected by R. J. Mathar, Apr 12 2010

A300074 Decimal expansion of 1/(2*sin(Pi/5)) = A121570/2.

Original entry on oeis.org

8, 5, 0, 6, 5, 0, 8, 0, 8, 3, 5, 2, 0, 3, 9, 9, 3, 2, 1, 8, 1, 5, 4, 0, 4, 9, 7, 0, 6, 3, 0, 1, 1, 0, 7, 2, 2, 4, 0, 4, 0, 1, 4, 0, 3, 7, 6, 4, 8, 1, 6, 8, 8, 1, 8, 3, 6, 7, 4, 0, 2, 4, 2, 3, 7, 7, 8, 8, 4, 0, 4, 7, 3, 6, 3, 9, 5, 8, 9, 6, 6, 6, 9, 4, 3, 2, 0, 3, 6, 4, 2, 7, 8, 5, 1, 7, 6
Offset: 0

Views

Author

Wolfdieter Lang, Mar 01 2018

Keywords

Comments

This is the reciprocal of A182007, and one half of A121570.
This is the ratio of the radius r of the circumscribing circle of a regular pentagon and its side length s: r/s = 1/(2*sin(Pi/5)).
A quartic number of denominator 5 and minimal polynomial 5x^4 - 5x^2 + 1. - Charles R Greathouse IV, Mar 04 2018
Appears at Schur decomposition of A=[1 2; 2 3]. - Donghwi Park, Jun 20 2018

Examples

			r/s = 0.850650808352039932181540497063011072240401403764816881836740242377...
2*r/s = A121570.
		

Crossrefs

Programs

Formula

r/s = 1/A182007 = A121570/2 = (2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = (1 + sqrt(5))/2 = A001622.
From Amiram Eldar, Feb 08 2022: (Start)
Equals cos(arccot(phi)) = cos(arctan(1/phi)) = cos(A195693).
Equals sin(arctan(phi)) = sin(arccot(1/phi)) = sin(A195723). (End)
Equals Product_{k>=1} (1 + (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024

A188593 Decimal expansion of (diagonal)/(shortest side) of a golden rectangle.

Original entry on oeis.org

1, 9, 0, 2, 1, 1, 3, 0, 3, 2, 5, 9, 0, 3, 0, 7, 1, 4, 4, 2, 3, 2, 8, 7, 8, 6, 6, 6, 7, 5, 8, 7, 6, 4, 2, 8, 6, 8, 1, 1, 3, 9, 7, 2, 6, 8, 2, 5, 1, 5, 0, 0, 4, 4, 4, 8, 9, 4, 6, 1, 1, 2, 8, 8, 8, 6, 0, 3, 0, 6, 3, 4, 0, 1, 7, 0, 3, 8, 7, 0, 0, 3, 4, 3, 7, 5, 8, 5, 6, 2, 1, 9, 4, 1, 6, 2, 2, 7, 6, 3, 3, 5, 1, 7, 9, 9, 4, 3, 5, 1, 0, 2, 8, 0, 6, 0, 0, 8, 4, 1, 7, 9, 7, 4, 1, 3, 2, 3, 8, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2011

Keywords

Comments

A rectangle of length L and width W is a golden rectangle if L/W = r = (1+sqrt(5))/2. The diagonal has length D = sqrt(L^2+W^2), so D/W = sqrt(r^2+1) = sqrt(r+2).
Largest root of x^4 - 5x^2 + 5. - Charles R Greathouse IV, May 07 2011
This is the case n=10 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n). - Bruno Berselli, Dec 13 2012
Edge length of a pentagram (regular star pentagon) with unit circumradius. - Stanislav Sykora, May 07 2014
The ratio diagonal/side of the shortest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020

Examples

			1.902113032590307144232878666758764286811397268251...
		

Crossrefs

Cf. A001622 (decimal expansion of the golden ratio), A019881.
Cf. A188594 (D/W for the silver rectangle, r=1+sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt((5+Sqrt(5))/2); // G. C. Greubel, Nov 02 2018
  • Mathematica
    r = (1 + 5^(1/2))/2; RealDigits[(2 + r)^(1/2), 10, 130][[1]]
    RealDigits[Sqrt[GoldenRatio+2],10,130][[1]] (* Harvey P. Dale, Oct 27 2023 *)
  • PARI
    sqrt((5+sqrt(5))/2)
    

Formula

Equals 2*A019881. - Mohammed Yaseen, Nov 04 2020
Equals csc(A195693) = sec(A195723). - Amiram Eldar, May 28 2021
Equals i^(1/5) + i^(-1/5). - Gary W. Adamson, Jul 08 2022
Equals sqrt(2 + phi) = sqrt(A296184), with phi = A001622. - Wolfdieter Lang, Aug 28 2022
Equals Product_{k>=0} ((10*k + 2)*(10*k + 8))/((10*k + 1)*(10*k + 9)). - Antonio Graciá Llorente, Feb 24 2024
Equals Product_{k>=1} (1 - (-1)^k/A090771(k)). - Amiram Eldar, Nov 23 2024

A195723 Decimal expansion of arctan(golden ratio).

Original entry on oeis.org

1, 0, 1, 7, 2, 2, 1, 9, 6, 7, 8, 9, 7, 8, 5, 1, 3, 6, 7, 7, 2, 2, 7, 8, 8, 9, 6, 1, 5, 5, 0, 4, 8, 2, 9, 2, 2, 0, 6, 3, 5, 6, 0, 8, 7, 6, 9, 8, 6, 8, 3, 6, 5, 8, 7, 1, 4, 9, 2, 0, 2, 6, 9, 2, 4, 3, 7, 0, 5, 3, 0, 3, 3, 6, 5, 4, 4, 2, 3, 1, 0, 2, 3, 0, 7, 3, 0, 8, 8, 4, 8, 3, 2, 7, 9, 7, 3, 2, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Comments

The polar angle, in radians, of the cone circumscribed to a regular icosahedron from one of its vertices. - Stanislav Sykora, Feb 15 2014
The angle between the diagonal and the shorter side of a golden rectangle. - Amiram Eldar, May 18 2021

Examples

			arctan((1+sqrt(5))/2) = 1.0172219678978513677227...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arctan((1+Sqrt(5))/2); // G. C. Greubel, Aug 20 2018
  • Mathematica
    r=GoldenRatio; N[ArcTan[r],100]
    RealDigits[%] (* A195723 *)
  • PARI
    atan((1+sqrt(5))/2) \\ G. C. Greubel, Aug 20 2018
    

Formula

Equals arccos(sqrt((5-sqrt(5))/10)). - Stanislav Sykora, Feb 15 2014
Equals Pi/2 - A195693. - Amiram Eldar, May 18 2021

A195692 Decimal expansion of arccos(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

9, 0, 4, 5, 5, 6, 8, 9, 4, 3, 0, 2, 3, 8, 1, 3, 6, 4, 1, 2, 7, 3, 1, 6, 7, 9, 5, 6, 6, 1, 9, 5, 8, 7, 2, 1, 4, 3, 1, 0, 9, 4, 5, 6, 0, 9, 6, 1, 6, 0, 5, 0, 6, 7, 6, 5, 5, 9, 9, 8, 4, 5, 3, 3, 4, 9, 9, 2, 9, 2, 1, 3, 7, 6, 4, 0, 4, 5, 2, 1, 7, 6, 0, 6, 1, 1, 0, 5, 8, 1, 5, 0, 1, 4, 7, 7, 3, 9, 8, 7, 3, 1, 2, 9, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Every cyclic quadrilateral all of whose angles are greater than arccos((sqrt(5)-1)/2) admits a 3 × 1 grid dissection into three cyclic quadrilaterals [Thm. 2.3 in Choi et al. p. 2]. - Michel Marcus, Aug 13 2019
The base angle of the isosceles triangle of smallest perimeter which circumscribes a semicircle (DeTemple, 1992). - Amiram Eldar, Jan 22 2022
Smallest positive root of the equation sin(x) = cot(x). - Wolfe Padawer, Apr 11 2023

Examples

			arccos(1/phi) = 0.904556894302381364127316795661958721...
cos(0.904556894302381364127316795661958721...) = 1/(golden ratio) = 0.618...
sec(0.904556894302381364127316795661958721...) = (golden ratio) = 1.618...
		

Crossrefs

Programs

  • Mathematica
    r = 1/GoldenRatio;
    N[ArcCos[r], 100]
    RealDigits[%]
  • PARI
    acos(2/(sqrt(5)+1)) \\ Charles R Greathouse IV, Nov 21 2024

Formula

From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A175288.
Equals arcsin(1/sqrt(phi)).
Equals arctan(sqrt(phi)). (End)

Extensions

Terms replaced with intended terms by Rick L. Shepherd, Jan 30 2013

A195694 Decimal expansion of arccos(-1/r), where r = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

2, 2, 3, 7, 0, 3, 5, 7, 5, 9, 2, 8, 7, 4, 1, 1, 8, 7, 4, 3, 3, 5, 3, 2, 6, 5, 8, 7, 6, 1, 7, 5, 4, 4, 1, 6, 2, 7, 6, 6, 0, 7, 4, 8, 3, 8, 4, 1, 3, 5, 0, 0, 7, 5, 3, 3, 1, 8, 9, 4, 6, 1, 3, 8, 9, 5, 7, 8, 8, 7, 1, 9, 2, 5, 2, 2, 1, 6, 3, 7, 8, 1, 0, 2, 1, 9, 2, 4, 2, 4, 3, 8, 4, 0, 6, 3, 9, 6, 6, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Let c1 and c2 be the constants at A195692 and A195694; then c1+c2 = Pi.

Examples

			arccos(-1/r) = 2.2370357592874118743353265876175441...
		

Crossrefs

Programs

Showing 1-7 of 7 results.