A197133 Decimal expansion of least x>0 having sin(x) = sin(2*x)^2.
2, 7, 2, 9, 7, 1, 8, 4, 9, 2, 3, 6, 8, 2, 4, 9, 5, 0, 4, 0, 8, 6, 1, 6, 8, 0, 6, 0, 8, 3, 8, 6, 9, 8, 3, 1, 0, 4, 7, 4, 0, 6, 6, 5, 1, 9, 6, 6, 4, 4, 0, 1, 8, 2, 7, 6, 6, 8, 0, 0, 0, 1, 1, 4, 8, 4, 3, 3, 5, 9, 2, 7, 0, 1, 0, 2, 2, 0, 8, 9, 0, 4, 3, 5, 9, 2, 4, 4, 8, 6, 4, 3, 1, 9, 4, 0, 5, 6, 9, 0, 8
Offset: 0
Examples
0.272971849236824950408616...
Programs
-
Mathematica
b = 1; c = 2; f[x_] := Sin[x] t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .3}, WorkingPrecision -> 100] RealDigits[t] (* A197133 *) Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi}] (* Second program: *) RealDigits[ ArcSec[ Root[16 - 16 x^2 + x^6, 3]], 10, 100] // First (* Jean-François Alcover, Feb 19 2013 *)
-
PARI
asin(2*sin(asin(3*sqrt(3)/8)/3)/sqrt(3)) \\ Gleb Koloskov, Sep 15 2021
-
PARI
asin(polrootsreal(4*x^3-4*x+1)[2]) \\ Charles R Greathouse IV, Feb 12 2025
Formula
From Gleb Koloskov, Sep 15 2021: (Start)
Equals arcsin(2*sin(arcsin(3*sqrt(3)/8)/3)/sqrt(3))
Extensions
Edited and a(99) corrected by Georg Fischer, Jul 28 2021
Comments