cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A182007 Decimal expansion of 2*sin(Pi/5).

Original entry on oeis.org

1, 1, 7, 5, 5, 7, 0, 5, 0, 4, 5, 8, 4, 9, 4, 6, 2, 5, 8, 3, 3, 7, 4, 1, 1, 9, 0, 9, 2, 7, 8, 1, 4, 5, 5, 3, 7, 1, 9, 5, 3, 0, 4, 8, 7, 5, 2, 8, 6, 2, 9, 1, 9, 8, 2, 1, 4, 4, 5, 4, 4, 9, 6, 1, 5, 1, 4, 5, 5, 6, 9, 4, 8, 3, 2, 4, 7, 0, 3, 9, 1, 5, 0, 1, 7, 0, 0
Offset: 1

Views

Author

Stanislav Sykora, Apr 06 2012

Keywords

Comments

The golden ratio phi is the real part of 2*exp(i*Pi/5), while this constant c is the corresponding imaginary part. It is handy, for example, in simplifying metric expressions for Platonic solids (particularly for regular icosahedron and dodecahedron).
Note that c^2+A001622^2 = 4; c*A001622 = A188593 = 2*A019881; c = 2*A019845.
Edge length of a regular pentagon with unit circumradius. - Stanislav Sykora, May 07 2014
This is a constructible number (see A003401 for more details). Moreover, since phi is also constructible, (2^k)*exp(i*Pi/5), for any integer k, is a constructible complex number. - Stanislav Sykora, May 02 2016
rms(c, phi) := sqrt((c^2+phi^2)/2) = sqrt(2) = A002193.

Examples

			1.1755705045849462583374119...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2*Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
  • Maple
    evalf(2*sin(Pi/5),100); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    RealDigits[2*Sin[Pi/5],10,120][[1]] (* Harvey P. Dale, Sep 29 2012 *)
  • PARI
    2*sin(Pi/5) \\ Stanislav Sykora, May 02 2016
    

Formula

Equals sqrt(3-phi).
Equals sqrt((5-sqrt(5))/2). - Jean-François Alcover, May 21 2013
Equals Product_{k>=0} ((10*k + 4)*(10*k + 6))/((10*k + 3)*(10*k + 7)). - Antonio Graciá Llorente, Mar 25 2024
Equals Product_{k>=1} (1 - (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A019845 = 1/A300074. - Hugo Pfoertner, Nov 23 2024

A242671 Decimal expansion of k2, a Diophantine approximation constant such that the area of the "critical parallelogram" (in this case a square) is 4*k2.

Original entry on oeis.org

7, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7, 4
Offset: 0

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Comments

Quoting Steven Finch: "The slopes of the 'critical parallelogram' are (1+sqrt(5))/2 [phi] and (1-sqrt(5))/2 [-1/phi]."
Essentially the same as A229780, A134972, A134945, A098317 and A002163. - R. J. Mathar, May 23 2014
Let W_n be the collection of all binary words of length n that do not contain two consecutive 0's. Let r_n be the ratio of the total number of 1's in W_n divided by the total number of letters in W_n. Then lim_{n->oo} r_n = 0.723606... Equivalently, lim_{n->oo} A004798(n)/(n*A000045(n+2)) = 0.723606... - Geoffrey Critzer, Feb 04 2022
The limiting frequency of the digit 0 in the base phi representation of real numbers in the range [0,1], where phi is the golden ratio (A001622) (Rényi, 1957). - Amiram Eldar, Mar 18 2025

Examples

			k2 = 0.723606797749978969640917366873127623544...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.23, p. 176.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1+1/Sqrt[5])/2, 10, 100] // First
  • PARI
    (1 + 1/sqrt(5))/2 \\ Stefano Spezia, Dec 07 2024

Formula

Equals (1 + 1/sqrt(5))/2.
Equals 1/A094874. - Michel Marcus, Dec 01 2018
From Amiram Eldar, Feb 11 2022: (Start)
Equals phi/sqrt(5), where phi is the golden ratio (A001622).
Equals lim_{k->oo} Fibonacci(k+1)/Lucas(k). (End)
From Amiram Eldar, Nov 28 2024: (Start)
Equals A344212/2 = A296184/5 = A300074^2 = sqrt(A229780).
Equals Product_{k>=1} (1 - 1/A081007(k)). (End)
Equals 1 - A244847. - Amiram Eldar, Mar 18 2025

A375068 Decimal expansion of the sagitta of a regular pentagon with unit side length.

Original entry on oeis.org

1, 6, 2, 4, 5, 9, 8, 4, 8, 1, 1, 6, 4, 5, 3, 1, 6, 3, 0, 7, 7, 9, 3, 5, 7, 0, 6, 1, 0, 7, 5, 6, 7, 2, 3, 2, 4, 7, 7, 4, 5, 1, 7, 3, 5, 7, 6, 0, 7, 3, 7, 5, 5, 0, 1, 5, 3, 9, 0, 2, 3, 5, 9, 5, 6, 8, 3, 3, 6, 4, 5, 0, 4, 8, 0, 3, 7, 2, 4, 7, 4, 1, 6, 1, 3, 4, 3, 8, 6, 7
Offset: 0

Views

Author

Paolo Xausa, Jul 29 2024

Keywords

Examples

			0.1624598481164531630779357061075672324774517357607...
		

Crossrefs

Cf. A300074 (circumradius), A375067 (apothem), A102771 (area).
Cf. sagitta of other polygons with unit side length: A020769 (triangle), A174968 (square), A375069 (hexagon), A374972 (heptagon), A375070 (octagon), A375153 (9-gon), A375189 (10-gon), A375192 (11-gon), A375194 (12-gon).

Programs

Formula

Equals tan(Pi/10)/2 = sqrt(1-2/sqrt(5))/2 = A019916/2.
Equals A300074 - A375067.
Equals A179050/5 = sqrt(A229760)/10. - Hugo Pfoertner, Jul 30 2024

A375067 Decimal expansion of the apothem (inradius) of a regular pentagon with unit side length.

Original entry on oeis.org

6, 8, 8, 1, 9, 0, 9, 6, 0, 2, 3, 5, 5, 8, 6, 7, 6, 9, 1, 0, 3, 6, 0, 4, 7, 9, 0, 9, 5, 5, 4, 4, 3, 8, 3, 9, 7, 6, 2, 9, 4, 9, 6, 6, 8, 0, 0, 4, 0, 7, 9, 3, 3, 1, 6, 8, 2, 8, 3, 7, 8, 8, 2, 8, 0, 9, 5, 4, 7, 5, 9, 6, 8, 8, 3, 5, 8, 6, 4, 9, 2, 5, 3, 2, 9, 7, 6, 4, 9, 6
Offset: 0

Views

Author

Paolo Xausa, Jul 29 2024

Keywords

Examples

			0.688190960235586769103604790955443839762949668...
		

Crossrefs

Cf. A300074 (circumradius), A375068 (sagitta), A102771 (area).
Cf. apothem of other polygons with unit side length: A020769 (triangle), A020761 (square), A010527 (hexagon), A374971 (heptagon), A174968 (octagon), A375152 (9-gon), A179452 (10-gon), A375191 (11-gon), A375193 (12-gon).

Programs

Formula

Equals cot(Pi/5)/2 = A019952/2.
Equals 1/(2*tan(Pi/5)) = 1/(2*A019934).
Equals sqrt(1/4 + 1/(2*sqrt(5))).
Equals (1/2)*csc(Pi/5)*cos(Pi/5) = A300074*A019863.
Equals A300074 - A375068.
Equals A131595/30. - Hugo Pfoertner, Jul 30 2024

A090773 Numbers that are congruent to {4, 6} mod 10.

Original entry on oeis.org

4, 6, 14, 16, 24, 26, 34, 36, 44, 46, 54, 56, 64, 66, 74, 76, 84, 86, 94, 96, 104, 106, 114, 116, 124, 126, 134, 136, 144, 146, 154, 156, 164, 166, 174, 176, 184, 186, 194, 196, 204, 206, 214, 216, 224, 226, 234, 236, 244, 246, 254, 256, 264, 266, 274, 276, 284
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Crossrefs

Programs

  • Mathematica
    #+{4,6}&/@(10Range[0,50])//Flatten (* or *) LinearRecurrence[{1,1,-1},{4,6,14},100] (* Harvey P. Dale, Jun 05 2017 *)

Formula

a(n) = 2 * A047221(n) = 5*n-5/2-3*(-1)^n/2.
a(n) = 10*n-a(n-1)-10 (with a(1)=4). - Vincenzo Librandi, Nov 16 2010
G.f.: 2*x*(2+x+2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1-2/sqrt(5))*Pi/10. - Amiram Eldar, Dec 28 2021
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(2*Pi/5) (A179290).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(Pi/5)/2 (A300074). (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004

A374957 Decimal expansion of the circumradius of a regular heptagon with unit side length.

Original entry on oeis.org

1, 1, 5, 2, 3, 8, 2, 4, 3, 5, 4, 8, 1, 2, 4, 3, 2, 5, 2, 6, 2, 0, 5, 7, 5, 1, 1, 1, 7, 7, 3, 4, 2, 7, 5, 5, 6, 7, 2, 2, 2, 5, 0, 9, 4, 3, 8, 0, 3, 1, 6, 0, 5, 8, 1, 0, 3, 1, 5, 5, 3, 1, 4, 8, 2, 3, 3, 4, 2, 6, 6, 7, 1, 3, 8, 9, 2, 3, 9, 7, 9, 8, 1, 8, 9, 5, 5, 5, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Jul 26 2024

Keywords

Examples

			1.15238243548124325262057511177342755672225094380...
		

Crossrefs

Cf. A374971 (apothem), A374972 (sagitta), A178817 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A285871 (octagon), A375151 (9-gon), A001622 (10-gon), A375190 (11-gon), A188887 (12-gon).

Programs

Formula

Equals csc(Pi/7)/2 = A121598/2.
Equals 1/(2*sin(Pi/7)) = 1/A272487.
Equals A374971/cos(Pi/7) = A374971/A073052.
Largest of the 6 real-valued roots of 7*x^6-14*x^4+7*x^2-1=0. - R. J. Mathar, Aug 29 2025

A375151 Decimal expansion of the circumradius of a regular 9-gon with unit side length.

Original entry on oeis.org

1, 4, 6, 1, 9, 0, 2, 2, 0, 0, 0, 8, 1, 5, 4, 3, 6, 2, 6, 1, 1, 6, 3, 7, 7, 2, 0, 6, 6, 8, 3, 1, 4, 5, 8, 5, 1, 9, 3, 6, 7, 5, 2, 8, 3, 0, 7, 5, 9, 4, 6, 2, 2, 4, 0, 8, 5, 5, 3, 1, 8, 4, 9, 3, 1, 7, 7, 6, 7, 2, 5, 8, 1, 3, 9, 9, 6, 7, 5, 9, 0, 4, 9, 1, 9, 6, 2, 7, 7, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 01 2024

Keywords

Examples

			1.46190220008154362611637720668314585193675283...
		

Crossrefs

Cf. A375152 (apothem), A375153 (sagitta), A256853 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A374957 (heptagon), A285871 (octagon), A001622 (10-gon), A375190 (11-gon), A188887 (12-gon)

Programs

Formula

Equals csc(Pi/9)/2 = A121602/2.
Equals 1/(2*sin(Pi/9)) = 1/A272488.
Equals A375152/cos(Pi/9) = A375152/A019879.
Equals A375152 + A375153.
Largest of the 6 real-valued roots of 3*x^6-9*x^4+6*x^2-1=0. - R. J. Mathar, Aug 29 2025

A375190 Decimal expansion of the circumradius of a regular 11-gon with unit side length.

Original entry on oeis.org

1, 7, 7, 4, 7, 3, 2, 7, 6, 6, 4, 4, 2, 1, 1, 1, 6, 6, 2, 8, 5, 6, 8, 3, 1, 9, 6, 1, 1, 6, 8, 9, 7, 5, 8, 4, 6, 1, 0, 5, 3, 7, 6, 3, 8, 2, 1, 2, 3, 0, 5, 1, 0, 6, 9, 5, 5, 2, 5, 8, 2, 9, 4, 3, 1, 5, 7, 3, 0, 0, 4, 9, 5, 8, 2, 6, 1, 6, 6, 9, 5, 0, 0, 1, 7, 7, 9, 5, 9, 9
Offset: 1

Views

Author

Paolo Xausa, Aug 04 2024

Keywords

Examples

			1.774732766442111662856831961168975846105376382123...
		

Crossrefs

Cf. A375191 (apothem), A375192 (sagitta), A256854 (area).
Cf. circumradius of other polygons with unit side length: A020760 (triangle), A010503 (square), A300074 (pentagon), A374957 (heptagon), A285871 (octagon), A375151 (9-gon), A001622 (10-gon), A188887 (12-gon).
Cf. A272489.

Programs

Formula

Equals csc(Pi/11)/2.
Equals 1/(2*sin(Pi/11)) = 1/A272489.
Equals A375191/cos(Pi/11).
Equals A375191 + A375192.

A384036 Decimal expansion of the surface area of a regular pentagonal prism of edge length 1.

Original entry on oeis.org

8, 4, 4, 0, 9, 5, 4, 8, 0, 1, 1, 7, 7, 9, 3, 3, 8, 4, 5, 5, 1, 8, 0, 2, 3, 9, 5, 4, 7, 7, 7, 2, 1, 9, 1, 9, 8, 8, 1, 4, 7, 4, 8, 3, 4, 0, 0, 2, 0, 3, 9, 6, 6, 5, 8, 4, 1, 4, 1, 8, 9, 4, 1, 4, 0, 4, 7, 7, 3, 7, 9, 8, 4, 4, 1, 7, 9, 3, 2, 4, 6, 2, 6, 6, 4, 8, 8
Offset: 1

Views

Author

Kritsada Moomuang, May 17 2025

Keywords

Examples

			8.4409548011779338455...
		

Crossrefs

Cf. A178809.
Cf. A102771 (volume), A300074 (midradius), A384059 (circumradius).

Programs

  • Mathematica
    RealDigits[5 + 1/2 * Sqrt(25 + 10 * Sqrt(5)), 10, 100, 0][[1]]

Formula

Equals 5 + (1/2)*sqrt(25 + 10*sqrt(5)).
Minimal polynomial: 16*x^4 - 320*x^3 + 2200*x^2 - 6000*x + 5125. - Stefano Spezia, May 17 2025

A384059 Decimal expansion of the circumradius of a regular pentagonal prism of edge length 1.

Original entry on oeis.org

9, 8, 6, 7, 1, 5, 1, 5, 5, 3, 2, 5, 9, 8, 3, 1, 0, 7, 3, 2, 0, 7, 0, 0, 0, 5, 5, 8, 4, 0, 6, 6, 8, 9, 1, 7, 8, 7, 2, 8, 5, 0, 4, 5, 2, 2, 3, 2, 0, 3, 5, 0, 7, 3, 7, 8, 6, 4, 3, 1, 5, 5, 2, 4, 8, 6, 1, 9, 6, 1, 0, 4, 0, 5, 4, 5, 3, 8, 1, 0, 3, 3, 0, 5, 7, 9, 1
Offset: 0

Views

Author

Kritsada Moomuang, May 18 2025

Keywords

Examples

			0.98671515532598310...
		

Crossrefs

Cf. A102771 (volume), A300074 (midradius), A384036 (surface area).

Programs

  • Mathematica
    RealDigits[1/2 * Sqrt(3 + 2/Sqrt(5)), 10, 100, -1][[1]]

Formula

Equals (1/2)*sqrt(3 + 2/sqrt(5)).
Minimal polynomial: 80*x^4 - 120*x^2 + 41. - Stefano Spezia, May 18 2025
Showing 1-10 of 10 results.