cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A197133 Decimal expansion of least x>0 having sin(x) = sin(2*x)^2.

Original entry on oeis.org

2, 7, 2, 9, 7, 1, 8, 4, 9, 2, 3, 6, 8, 2, 4, 9, 5, 0, 4, 0, 8, 6, 1, 6, 8, 0, 6, 0, 8, 3, 8, 6, 9, 8, 3, 1, 0, 4, 7, 4, 0, 6, 6, 5, 1, 9, 6, 6, 4, 4, 0, 1, 8, 2, 7, 6, 6, 8, 0, 0, 0, 1, 1, 4, 8, 4, 3, 3, 5, 9, 2, 7, 0, 1, 0, 2, 2, 0, 8, 9, 0, 4, 3, 5, 9, 2, 4, 4, 8, 6, 4, 3, 1, 9, 4, 0, 5, 6, 9, 0, 8
Offset: 0

Views

Author

Clark Kimberling, Oct 12 2011

Keywords

Comments

The Mathematica program includes a graph.
Guide for least x>0 satisfying sin(b*x) = sin(c*x)^2 for selected numbers b and c:
b.....c.......x
1.....2.......A197133
1.....3.......A197134
1.....4.......A197135
1.....5.......A197251
1.....6.......A197252
1.....7.......A197253
1.....8.......A197254
2.....1.......A105199, x=arctan(2)
2.....3.......A019679, x=Pi/12
2.....4.......A197255
2.....5.......A197256
2.....6.......A197257
2.....7.......A197258
2.....8.......A197259
3.....1.......A197260
3.....2.......A197261
3.....4.......A197262
3.....5.......A197263
3.....6.......A197264
3.....7.......A197265
3.....8.......A197266
4.....1.......A197267
4.....2.......A195693, x=arctan(1/(golden ratio))
4.....3.......A197268
1.....4*Pi....A197522
1.....3*Pi....A197571
1.....2*Pi....A197572
1.....3*Pi/2..A197573
1.....Pi......A197574
1.....Pi/2....A197575
1.....Pi/3....A197326
1.....Pi/4....A197327
1.....Pi/6....A197328
2.....Pi/3....A197329
2.....Pi/4....A197330
2.....Pi/6....A197331
3.....Pi/3....A197332
3.....Pi/6....A197375
3.....Pi/4....A197333
1.....1/2.....A197376
1.....1/3.....A197377
1.....2/3.....A197378
Pi....1.......A197576
Pi....2.......A197577
Pi....3.......A197578
2*Pi..1.......A197585
3*Pi..1.......A197586
4*Pi..1.......A197587
Pi/2..1.......A197579
Pi/2..2.......A197580
Pi/2..1/2.....A197581
Pi/3..Pi/4....A197379
Pi/3..Pi/6....A197380
Pi/4..Pi/3....A197381
Pi/4..Pi/6....A197382
Pi/6..Pi/3....A197383
Pi/6..Pi/4..........., x=1
Pi/3..1.......A197384
Pi/3..2.......A197385
Pi/3..3.......A197386
Pi/3..1/2.....A197387
Pi/3..1/3.....A197388
Pi/3..2/3.....A197389
Pi/4..1.......A197390
Pi/4..2.......A197391
Pi/4..3.......A197392
Pi/4..1/2.....A197393
Pi/4..1/3.....A197394
Pi/4..2/3.....A197411
Pi/4..1/4.....A197412
Pi/6..1.......A197413
Pi/6..2.......A197414
Pi/6..3.......A197415
Pi/6..1/2.....A197416
Pi/6..1/3.....A197417
Pi/6..2/3.....A197418
Cf. A197476 for a similar table for sin(b*x) = sin(c*x)^2.

Examples

			0.272971849236824950408616...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 2; f[x_] := Sin[x]
    t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .1, .3}, WorkingPrecision -> 100]
    RealDigits[t] (* A197133 *)
    Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi}]
    (* Second program: *)
    RealDigits[ ArcSec[ Root[16 - 16 x^2 + x^6, 3]], 10, 100] // First (* Jean-François Alcover, Feb 19 2013 *)
  • PARI
    asin(2*sin(asin(3*sqrt(3)/8)/3)/sqrt(3)) \\ Gleb Koloskov, Sep 15 2021
    
  • PARI
    asin(polrootsreal(4*x^3-4*x+1)[2]) \\ Charles R Greathouse IV, Feb 12 2025

Formula

From Gleb Koloskov, Sep 15 2021: (Start)
Equals arcsin(2*sin(arcsin(3*sqrt(3)/8)/3)/sqrt(3))
= arcsin(2*sin(arcsin(A333322)/3)/A002194). (End)

Extensions

Edited and a(99) corrected by Georg Fischer, Jul 28 2021

A079586 Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k).

Original entry on oeis.org

3, 3, 5, 9, 8, 8, 5, 6, 6, 6, 2, 4, 3, 1, 7, 7, 5, 5, 3, 1, 7, 2, 0, 1, 1, 3, 0, 2, 9, 1, 8, 9, 2, 7, 1, 7, 9, 6, 8, 8, 9, 0, 5, 1, 3, 3, 7, 3, 1, 9, 6, 8, 4, 8, 6, 4, 9, 5, 5, 5, 3, 8, 1, 5, 3, 2, 5, 1, 3, 0, 3, 1, 8, 9, 9, 6, 6, 8, 3, 3, 8, 3, 6, 1, 5, 4, 1, 6, 2, 1, 6, 4, 5, 6, 7, 9, 0, 0, 8, 7, 2, 9, 7, 0, 4
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

André-Jeannin proved that this constant is irrational.
This constant does not belong to the quadratic number field Q(sqrt(5)) (Bundschuh and Väänänen, 1994). - Amiram Eldar, Oct 30 2020

Examples

			3.35988566624317755317201130291892717968890513373...
		

References

  • Daniel Duverney, Number Theory, World Scientific, 2010, 5.22, pp.75-76.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.

Crossrefs

Programs

  • Maple
    Digits := 120: c := Pi/2 + I*arccsch(2):
    Jeannin := n -> sqrt(5/4)*add(I^(1-j)/sin(j*c), j = 1..n):
    evalf(Jeannin(1000)); # Peter Luschny, Nov 15 2023
  • Mathematica
    digits = 105; Sqrt[5]*NSum[(-1)^n/(GoldenRatio^(2*n + 1) - (-1)^n), {n, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Apr 09 2013 *)
    First@RealDigits[Sqrt[5]/4 ((Log[5] + 2 QPolyGamma[1, 1/GoldenRatio^4] - 4 QPolyGamma[1, 1/GoldenRatio^2])/(2 Log[GoldenRatio]) + EllipticTheta[2, 0, 1/GoldenRatio^2]^2), 10, 105] (* Vladimir Reshetnikov, Nov 18 2015 *)
  • PARI
    /* Fast computation without splitting into even and odd indices, see the Arndt reference */
    lambert2(x, a, S)=
    {
    /* Return G(x,a) = Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series)
       computed as Sum_{n=1..S} x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) )
       As series in x correct up to order S^2.
       We also have G(x,a) = Sum_{n>=1} a^n*x^n/(1-x^n) */
        return( sum(n=1,S, x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) ) );
    }
    inv_fib_sum(p=1, q=1, S)=
    {
    /* Return Sum_{n>=1} 1/f(n) where f(0)=0, f(1)=1, f(n) = p*f(n-1) + q*f(n-1)
       computed using generalized Lambert series.
       Must have p^2+4*q > 0 */
        my(al,be);
        \\ Note: the q here is -q in the Horadam paper.
        \\ The following numerical examples are for p=q=1:
        al=1/2*(p+sqrt(p^2+4*q));  \\ == +1.6180339887498...
        be=1/2*(p-sqrt(p^2+4*q));  \\ == -0.6180339887498...
        return( (al-be)*( 1/(al-1) + lambert2(be/al, 1/al, S) ) ); \\ == 3.3598856...
    }
    default(realprecision,100);
    S = 1000; /* (be/al)^S == -0.381966^S == -1.05856*10^418 << 10^-100 */
    inv_fib_sum(1,1,S) /* 3.3598856... */ /* Joerg Arndt, Jan 30 2011 */
    
  • PARI
    suminf(k=1, 1/(fibonacci(k))) \\ Michel Marcus, Feb 19 2019
    
  • Sage
    m=120; numerical_approx(sum(1/fibonacci(k) for k in (1..10*m)), digits=m) # G. C. Greubel, Feb 20 2019

Formula

Alternating series representation: 3 + Sum_{k >= 1} (-1)^(k+1)/(F(k)*F(k+1)*F(k+2)). - Peter Bala, Nov 30 2013
From Amiram Eldar, Oct 04 2020: (Start)
Equals sqrt(5) * Sum_{k>=0} (1/(phi^(2*k+1) - 1) - 2*phi^(2*k+1)/(phi^(4*(2*k+1)) - 1)), where phi is the golden ratio (A001622) (Greig, 1977).
Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) - (-1)^k) (Griffin, 1992).
Equals A153386 + A153387. (End)
From Gleb Koloskov, Sep 14 2021: (Start)
Equals 1 + c1*(c2 + 32*Integral_{x=0..infinity} f(x) dx),
where c1 = sqrt(5)/(8*log(phi)) = A002163/(8*A002390),
c2 = 2*arctan(2)+log(5) = 2*A105199+A016628,
phi = (1+sqrt(5))/2 = A001622,
f(x) = sin(x)*(4+cos(2*x))/((exp(Pi*x/log(phi))-1)*(2*cos(2*x)+3)*(7-2*cos(2*x))) (End)
From Amiram Eldar, Jan 27 2022: (Start)
Equals 3 + 2 * Sum_{k>=1} 1/(F(2*k-1)*F(2*k+1)*F(2*k+2)) (Bruckman, 1987).
Equals 2 + Sum_{k>=1} 1/A350901(k) (André-Jeannin, Problem H-450, 1991).
Equals lim_{n->oo} A350903(n)/(A350904(n)*A350902(n)) (André-Jeannin, 1991). (End)
Equals sqrt(5/4)*Sum_{j>=1} i^(1-j)/sin(j*c) where c = Pi/2 + i*arccsch(2). - Peter Luschny, Nov 15 2023
Equals lim_{n->oo} A203006(n)/A003266(n) (Z.W. M. Trzaska, 1996). - Raul Prisacariu, Sep 04 2024

A019881 Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).

Original entry on oeis.org

9, 5, 1, 0, 5, 6, 5, 1, 6, 2, 9, 5, 1, 5, 3, 5, 7, 2, 1, 1, 6, 4, 3, 9, 3, 3, 3, 3, 7, 9, 3, 8, 2, 1, 4, 3, 4, 0, 5, 6, 9, 8, 6, 3, 4, 1, 2, 5, 7, 5, 0, 2, 2, 2, 4, 4, 7, 3, 0, 5, 6, 4, 4, 4, 3, 0, 1, 5, 3, 1, 7, 0, 0, 8, 5, 1, 9, 3, 5, 0, 1, 7, 1, 8, 7, 9, 2, 8, 1, 0, 9, 7, 0, 8, 1, 1, 3, 8, 1
Offset: 0

Views

Author

Keywords

Comments

Circumradius of pentagonal pyramid (Johnson solid 2) with edge 1. - Vladimir Joseph Stephan Orlovsky, Jul 19 2010
Circumscribed sphere radius for a regular icosahedron with unit edges. - Stanislav Sykora, Feb 10 2014
Side length of the particular golden rhombus with diagonals 1 and phi (A001622); area is phi/2 (A019863). Thus, also the ratio side/(shorter diagonal) for any golden rhombus. Interior angles of a golden rhombus are always A105199 and A137218. - Rick L. Shepherd, Apr 10 2017
An algebraic number of degree 4; minimal polynomial is 16x^4 - 20x^2 + 5, which has these smaller, other solutions (conjugates): -A019881 < -A019845 < A019845 (sine of 36 degrees). - Rick L. Shepherd, Apr 11 2017
This is length ratio of one half of any diagonal in the regular pentagon and the circumscribing radius. - Wolfdieter Lang, Jan 07 2018
Quartic number of denominator 2 and minimal polynomial 16x^4 - 20x^2 + 5. - Charles R Greathouse IV, May 13 2019
This gives the imaginary part of one of the members of a conjugate pair of roots of x^5 - 1, with real part (-1 + phi)/2 = A019827, where phi = A001622. A member of the other conjugte pair of roots is (-phi + sqrt(3 - phi)*i)/2 = (-A001622 + A182007*i)/2 = -A001622/2 + A019845*i. - Wolfdieter Lang, Aug 30 2022

Examples

			0.95105651629515357211643933337938214340569863412575022244730564443015317008...
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A179296 (dodecahedron), A187110 (tetrahedron). - Stanislav Sykora, Feb 10 2014

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt((5 + Sqrt(5))/8); // G. C. Greubel, Nov 02 2018
  • Maple
    Digits:=100: evalf(sin(2*Pi/5)); # Wesley Ivan Hurt, Sep 01 2014
  • Mathematica
    RealDigits[Sqrt[(5 + Sqrt[5])/8], 10, 111]  (* Robert G. Wilson v *)
    RealDigits[Sin[2 Pi/5], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    default(realprecision, 120);
    real(I^(1/5)) \\ Rick L. Shepherd, Apr 10 2017
    

Formula

Equals sqrt((5+sqrt(5))/8) = cos(Pi/10). - Zak Seidov, Nov 18 2006
Equals 2F1(13/20,7/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals the real part of i^(1/5). - Stanislav Sykora, Apr 25 2012
Equals A001622*A182007/2. - Stanislav Sykora, Feb 10 2014
Equals sin(2*Pi/5) = sqrt(2 + phi)/2 = -sin(3*Pi/5), with phi = A001622 - Wolfdieter Lang, Jan 07 2018
Equals 2*A019845*A019863. - R. J. Mathar, Jan 17 2021

A073000 Decimal expansion of arctangent of 1/2.

Original entry on oeis.org

4, 6, 3, 6, 4, 7, 6, 0, 9, 0, 0, 0, 8, 0, 6, 1, 1, 6, 2, 1, 4, 2, 5, 6, 2, 3, 1, 4, 6, 1, 2, 1, 4, 4, 0, 2, 0, 2, 8, 5, 3, 7, 0, 5, 4, 2, 8, 6, 1, 2, 0, 2, 6, 3, 8, 1, 0, 9, 3, 3, 0, 8, 8, 7, 2, 0, 1, 9, 7, 8, 6, 4, 1, 6, 5, 7, 4, 1, 7, 0, 5, 3, 0, 0, 6, 0, 0, 2, 8, 3, 9, 8, 4, 8, 8, 7, 8, 9, 2, 5, 5, 6, 5, 2, 9
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The angle at which you must shoot a cue ball on a standard pool table so that it will strike all four sides and return to its origin. [Barrow] - Robert G. Wilson v, Nov 29 2015

Examples

			Arctan(1/2)
=0.463647609000806116214256231461214402028537054286120263810933088720197864165... radians
=26°.56505117707798935157219372045329467120421429964522102798601631528806582148474...
=26°33'.9030706246793610943316232271976802722528579787132616791609789172839492890...
=26°33'54".184237480761665659897393631860816335171478722795700749658735037036957...
complement = 63°.43494882292201064842780627954670532879578570035477897201398368471...
supplement = 153°.4349488229220106484278062795467053287957857003547789720139836847...
		

References

  • John D. Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton & Co., NY & London, 2008.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 242.

Crossrefs

Programs

  • Maple
    evalf(arctan(0.5)) ; # R. J. Mathar, Aug 22 2013
  • Mathematica
    RealDigits[ ArcTan[1/2], 10, 110] [[1]]
  • PARI
    default(realprecision,2000); atan(1/2) \\ Anders Hellström, Nov 30 2015

Formula

Equals Pi/2 - A105199 = A019669-A105199. - R. J. Mathar, Aug 21 2013
From Peter Bala, Feb 04 2015: (Start)
Arctan(1/2) = 1/2*Sum_{k >= 0} (-1)^k/((2*k + 1)*4^k).
Define a pair of integer sequences A(n) = 4^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} (-1)^k/((2*k + 1)*4^k). Both sequences satisfy the same second order recurrence equation u(n) = (12*n + 10)*u(n-1) + 16*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 2*arctan(1/2) = 1 - 2/(24 + 16*3^2/(34 + 16*5^2/(46 + ... + 16*(2*n - 1)^2/((12*n + 10) + ...)))). See A002391, A105531 and A002162 for similar expansions.
Arctan(1/2) = 2/5 * Sum_{k >= 0} (4/5)^k/((2*k + 1)*binomial(2*k,k)).
Define a pair of integer sequences C(n) = 5^n*(2*n + 1)!/n! and D(n) = C(n)*Sum_{k = 0..n} (4/5)^k/((2*k + 1)*binomial(2*k,k)). Both sequences satisfy the same second order recurrence equation u(n) = (24*n + 10)*u(n-1) - 40*n*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 5/2*arctan(1/2) = 1 + 4/(30 - 240/(58 - 600/(82 - ... - 40*n*(2*n - 1)/((24*n + 10) - ... )))).
Arctan(1/2) = 2/25 * Sum_{k >= 0} (24*k + 17)*(4/5)^(2*k)/( (4*k + 1)*(4*k + 3)*binomial(4*k,2*k) ).
Arctan(1/2) = 2/125 * Sum_{k >= 0} (1116*k^2 + 1446*k + 433)*(4/5)^(3*k)/( (6*k + 1)*(6*k + 3)*(6*k + 5)*binomial(6*k,3*k) ). (End)
Equals Integral_{x = 0..oo} exp(-2*x)*sin(x)/x dx. - Peter Bala, Nov 05 2019
Equals 2 * arccot(phi^3), where phi is the golden ratio (A001622). - Amiram Eldar, Jul 06 2023
Equals Sum_{n >= 1} i/(n*P(n, 2*i)*P(n-1, 2*i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A098443(n)*A098443(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(2))^n ). - Peter Bala, Mar 16 2024

A156546 Decimal expansion of the central angle of a regular tetrahedron.

Original entry on oeis.org

1, 9, 1, 0, 6, 3, 3, 2, 3, 6, 2, 4, 9, 0, 1, 8, 5, 5, 6, 3, 2, 7, 7, 1, 4, 2, 0, 5, 0, 3, 1, 5, 1, 5, 5, 0, 8, 4, 8, 6, 8, 2, 9, 3, 9, 0, 0, 2, 0, 0, 1, 0, 9, 8, 1, 9, 1, 9, 3, 9, 6, 2, 5, 8, 6, 4, 3, 8, 2, 4, 0, 9, 1, 8, 0, 7, 9, 5, 2, 9, 1, 0, 7, 7, 4, 7, 8, 3, 2, 0, 5, 1, 7, 1, 2, 5, 6, 1, 4, 6, 8, 4, 3, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2009

Keywords

Comments

If O is the center of a regular tetrahedron ABCD, then the central angle AOB is this number; exact value is Pi - arccos(1/3).
The (minimal) central angle of the other four regular polyhedra are as follows:
- cube: A137914,
- octahedron: A019669,
- dodecahedron: A156547,
- icosahedron: A105199.
Dihedral angle of two adjacent faces of the octahedron. - R. J. Mathar, Mar 24 2012
Best known as "tetrahedral angle" theta (e.g., in chemistry). Its Pi complement (i.e., Pi - theta) is the dihedral angle between adjacent faces in regular tetrahedron. - Stanislav Sykora, May 31 2012
Also twice the magic angle (A195696). - Stanislav Sykora, Nov 14 2013

Examples

			Pi - arccos(1/3) = 1.910633236249018556..., or, in degrees, 109.471220634490691369245999339962435963006843100... = A247412
		

Crossrefs

Cf. Platonic solids dihedral angles: A137914 (tetrahedron), A019669 (cube), A236367 (icosahedron), A137218 (dodecahedron). - Stanislav Sykora, Jan 23 2014

Programs

Formula

Start with vertices (1,1,1), (1,-1,-1,), (-1,1,-1), and (1,-1,1) and apply the formula for cosine of the angle between two vectors.
Equals 2* A195696. - R. J. Mathar, Mar 24 2012
Equals A000796 - A137914 = A247412 / A072097 - R. J. Mathar, Feb 18 2025

A020762 Decimal expansion of 1/sqrt(5).

Original entry on oeis.org

4, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7, 5, 7, 5, 6, 4, 5, 4, 9, 9, 3, 9, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This number is the cosine of the central angle of a regular icosahedron; see A105199 for the angle itself. - Clark Kimberling, Feb 10 2009
Largest radius of ten circles tangent to a circle of radius 1. - Charles R Greathouse IV, Jan 14 2013

Examples

			0.447213595499957939281834733746255247088123671922305144854179449082104...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5^(-1/2), 10, 150] (* Stefan Steinerberger, Apr 08 2006 *)
    Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[
      Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}],
        {Blue, Circle[{0, 0}, 1]}]]]
    Circs[10] (* Charles R Greathouse IV, Jan 14 2013 *)
  • PARI
    1/sqrt(5) \\ Charles R Greathouse IV, Jan 14 2013

Formula

Equals cos(arctan(2)). - Clark Kimberling, Feb 10 2009
Equals lim_{n -> infinity} A000045(n)/A000032(n). - Bruno Berselli, Jan 22 2018
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (2*n)!/(n!^2*3^(2*n+1)).
Equals Sum_{n>=0} 5*(2*n+1)!/(n!^2*3^(2*n+3)). (End)
Equals A010476/10. - R. J. Mathar, Jan 14 2021
Equals Sum_{k>=1} F(2^(k-1))/(L(2^k)+1) = Sum_{k>=0} A058635(k)/(A001566(k)+1), where F(k) = A000045(k) is the k-th Fibonacci number and L(k) = A000032(k) is the k-th Lucas number (Ohtsuka, 2014). - Amiram Eldar, Dec 09 2021

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A137218 Decimal expansion of the argument of -1 + 2*i.

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 3, 9, 3, 5, 7, 9, 5, 7, 0, 2, 7, 3, 5, 4, 4, 5, 5, 7, 7, 9, 2, 3, 1, 0, 0, 9, 6, 5, 8, 4, 4, 1, 2, 7, 1, 2, 1, 7, 5, 3, 9, 7, 3, 6, 7, 3, 1, 7, 4, 2, 9, 8, 4, 0, 5, 3, 8, 4, 8, 7, 4, 1, 0, 6, 0, 6, 7, 3, 0, 8, 8, 4, 6, 2, 0, 4, 6, 1, 4, 6, 1, 7, 6, 9, 6, 6, 5, 5, 9, 4, 6, 4, 2, 6, 5, 4, 7, 6, 0
Offset: 1

Views

Author

Matt Rieckman (mjr162006(AT)yahoo.com), Mar 06 2008

Keywords

Comments

Gives closed forms for many arctangent values:
arctan(2) = Pi - a, arctan(1/2) = a - Pi/2,
arctan(3) = a - Pi/4, arctan(1/3) = 3*Pi/4 - a,
arctan(7) = 7*Pi/4 - 2*a, arctan(1/7) = 2*a - 5*Pi/4,
arctan(4/3) = 2*a - Pi and arctan(3/4) = 3*Pi/2 - 2*a.
Dihedral angle in the dodecahedron (radians). - R. J. Mathar, Mar 24 2012
Larger interior angle (in radians) of a golden rhombus; A105199 is the smaller interior angle. - Eric W. Weisstein, Dec 17 2018

Examples

			2.0344439357957027354455779231...
		

Crossrefs

Platonic solids' dihedral angles: A137914 (tetrahedron), A156546 (octahedron), A019669 (cube), A236367 (icosahedron). - Stanislav Sykora, Jan 23 2014
Cf. A242723 (same in degrees).
Cf. A105199 (smaller interior angle of the golden rhombus).

Programs

  • Mathematica
    RealDigits[Pi - ArcTan[2], 10, 120][[1]] (* Harvey P. Dale, Aug 08 2014 *)
  • PARI
    default(realprecision, 120);
    acos(-1/sqrt(5)) \\ or
    arg(-1+2*I) \\ Rick L. Shepherd, Jan 26 2014

Formula

Equals Pi - arctan(2) = A000796 - A105199 = 2*A195723.

Extensions

Corrected a typo in the sequence Matt Rieckman (mjr162006(AT)yahoo.com), Feb 05 2010
More terms from Rick L. Shepherd, Jan 26 2014

A156547 Decimal expansion of the central angle of a regular dodecahedron.

Original entry on oeis.org

7, 2, 9, 7, 2, 7, 6, 5, 6, 2, 2, 6, 9, 6, 6, 3, 6, 3, 4, 5, 4, 7, 9, 6, 6, 5, 9, 8, 1, 3, 3, 2, 0, 6, 9, 5, 3, 9, 6, 5, 0, 5, 9, 1, 4, 0, 4, 7, 7, 1, 3, 6, 9, 0, 7, 0, 8, 9, 4, 9, 4, 9, 1, 4, 6, 1, 8, 1, 8, 8, 9, 9, 6, 6, 6, 7, 6, 7, 1, 3, 8, 7, 9, 5, 4, 8, 3, 4, 0, 7, 8, 1, 9, 4, 7, 3, 5, 0, 0, 2, 0, 8, 0, 9, 5
Offset: 1

Views

Author

Clark Kimberling, Feb 09 2009

Keywords

Comments

If A and B are neighboring vertices of a regular dodecahedron having center O, then the central angle AOB is this number; the exact value is arccos((1/3)*sqrt(5)) = arcsin(2/3).
The (minimal) central angle of the other four regular polyhedra are as follows:
- tetrahedron: A156546,
- cube: A137914,
- octahedron: A019669,
- icosahedron: A105199.

Examples

			arccos((1/3)*sqrt(5))=0.729727656226966..., or, in degrees,
41.810314895778598065857916730578259531014119535901347753...
		

Crossrefs

Programs

Formula

The dodecahedron has 12 faces and 20 vertices. To find the central angle, we need any neighboring pair of vertices. Here are all 20 vertices:
- (d,d,d) where d is 1 or -1 (that's 8 vertices);
- (0, d*(t-1),d*t), where d is 1 or -1 and d = golden ratio = (1+sqrt(5))/2;
- (d*(t-1), d*t, 0); and ((d*t,0,d*(t-1)).
An example of a neighboring pair is (1,1,1) and (0,t,t-1).
Apply the usual formula for the cosine of the angle between two vectors.
Equals 2 * arccot(phi^2), where phi is the golden ratio (A001622). - Amiram Eldar, Jul 06 2023

A195708 Decimal expansion of arccos(sqrt(2/5)) and of arcsin(sqrt(3/5)).

Original entry on oeis.org

8, 8, 6, 0, 7, 7, 1, 2, 3, 7, 9, 2, 6, 1, 3, 7, 0, 5, 3, 4, 3, 2, 2, 3, 6, 2, 1, 9, 2, 8, 6, 8, 7, 4, 2, 6, 1, 6, 9, 3, 1, 1, 3, 9, 0, 5, 4, 4, 8, 9, 0, 6, 4, 8, 3, 7, 2, 3, 6, 1, 7, 6, 9, 8, 0, 4, 7, 5, 8, 7, 8, 8, 8, 8, 5, 9, 7, 8, 1, 7, 4, 8, 4, 4, 9, 3, 1, 1, 7, 1, 3, 8, 0, 7, 2, 9, 2, 3, 5, 4
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			0.886077123792...
		

Crossrefs

Programs

  • Magma
    [Arccos(Sqrt(2/5))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[1/5]; s = Sqrt[2/5];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A073000 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A105199 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A188595 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A137218 *)
    N[ArcSin[s], 100]
    RealDigits[%]  (* A195701 *)
    N[ArcCos[s], 100]
    RealDigits[%]  (* A195708 *)
    N[ArcTan[s], 100]
    RealDigits[%]  (* A195709 *)
    N[ArcCos[-s], 100]
    RealDigits[%]  (* A195710 *)
  • PARI
    acos(sqrt(2/5)) \\ G. C. Greubel, Nov 18 2017
    

Formula

Equals arctan(sqrt(3/2)). - Amiram Eldar, Jul 04 2023

A195709 Decimal expansion of arctan(sqrt(2/5)).

Original entry on oeis.org

5, 6, 3, 9, 4, 2, 6, 4, 1, 3, 6, 0, 6, 2, 8, 8, 4, 2, 6, 9, 3, 8, 3, 1, 1, 7, 2, 1, 8, 3, 7, 4, 6, 8, 4, 7, 8, 5, 1, 8, 5, 9, 5, 3, 9, 3, 0, 4, 2, 5, 6, 7, 8, 3, 7, 5, 7, 2, 4, 2, 6, 6, 4, 2, 6, 6, 9, 2, 6, 2, 7, 9, 6, 5, 7, 8, 7, 4, 1, 2, 3, 6, 4, 0, 9, 2, 9, 4, 5, 7, 1, 8, 8, 3, 8, 4, 5, 1, 4, 2
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arctan(sqrt(2/5)) = 0.5639426413606...
		

Crossrefs

Cf. A195708.

Programs

  • Magma
    [Arctan(Sqrt(2/5))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[1/5]; s = Sqrt[2/5];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A073000 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A105199 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A188595 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A137218 *)
    N[ArcSin[s], 100]
    RealDigits[%]  (* A195701 *)
    N[ArcCos[s], 100]
    RealDigits[%]  (* A195708 *)
    N[ArcTan[s], 100]
    RealDigits[%]  (* A195709 *)
    N[ArcCos[-s], 100]
    RealDigits[%]  (* A195710 *)
  • PARI
    atan(sqrt(2/5)) \\ G. C. Greubel, Nov 18 2017
    
Showing 1-10 of 20 results. Next