cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A144984 Denominators of an Egyptian fraction for 1/sqrt(5) (A020762).

Original entry on oeis.org

3, 9, 362, 148807, 432181530536, 615828580117398011389583, 385329014801969222669766835659574445455872858297
Offset: 1

Views

Author

Artur Jasinski, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; k = N[1/Sqrt[5], 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a

A010476 Decimal expansion of square root of 20.

Original entry on oeis.org

4, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7, 5, 7, 5, 6, 4, 5, 4, 9, 9, 3, 9, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 4 followed by {2, 8} repeated. - Harry J. Smith, Jun 03 2009

Examples

			4.472135954999579392818347337462552470881236719223051448541794490821041....
		

Crossrefs

Except for offset, same as A020762.
Cf. A040015 (continued fraction). - Harry J. Smith, Jun 03 2009
Cf. A002163 (decimal expansion of square root of 5).

Programs

  • Mathematica
    RealDigits[N[Sqrt[20], 100]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
  • PARI
    default(realprecision, 20080); x=sqrt(20); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010476.txt", n, " ", d));  \\ Harry J. Smith, Jun 03 2009

Formula

sqrt(20) = 2*sqrt(5). - Alonso del Arte, Jun 26 2015
Equals Sum_{k>=0} binomial(2*k,k) * k/5^k. - Amiram Eldar, Aug 03 2020

A344212 Decimal expansion of 1 + 1/sqrt(5).

Original entry on oeis.org

1, 4, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, May 11 2021

Keywords

Comments

Decimal expansion of the midradius of a rhombic triacontahedron with unit edge length.
Essentially the same sequence of digits as A176453, A134974, A020762 and A010476. - R. J. Mathar, May 16 2021

Examples

			1.447213595499957939281834733746255247088123671922305...
		

Crossrefs

Cf. A019952 (rhombic triacontahedron inscribed sphere radius).
Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344172 (rhombic triacontahedron volume).

Programs

Formula

From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A242671 = 1/A187798.
Equals Product_{k>=0} (1 + 1/A081005(k)). (End)

A242671 Decimal expansion of k2, a Diophantine approximation constant such that the area of the "critical parallelogram" (in this case a square) is 4*k2.

Original entry on oeis.org

7, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7, 4
Offset: 0

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Comments

Quoting Steven Finch: "The slopes of the 'critical parallelogram' are (1+sqrt(5))/2 [phi] and (1-sqrt(5))/2 [-1/phi]."
Essentially the same as A229780, A134972, A134945, A098317 and A002163. - R. J. Mathar, May 23 2014
Let W_n be the collection of all binary words of length n that do not contain two consecutive 0's. Let r_n be the ratio of the total number of 1's in W_n divided by the total number of letters in W_n. Then lim_{n->oo} r_n = 0.723606... Equivalently, lim_{n->oo} A004798(n)/(n*A000045(n+2)) = 0.723606... - Geoffrey Critzer, Feb 04 2022
The limiting frequency of the digit 0 in the base phi representation of real numbers in the range [0,1], where phi is the golden ratio (A001622) (Rényi, 1957). - Amiram Eldar, Mar 18 2025

Examples

			k2 = 0.723606797749978969640917366873127623544...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.23, p. 176.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1+1/Sqrt[5])/2, 10, 100] // First
  • PARI
    (1 + 1/sqrt(5))/2 \\ Stefano Spezia, Dec 07 2024

Formula

Equals (1 + 1/sqrt(5))/2.
Equals 1/A094874. - Michel Marcus, Dec 01 2018
From Amiram Eldar, Feb 11 2022: (Start)
Equals phi/sqrt(5), where phi is the golden ratio (A001622).
Equals lim_{k->oo} Fibonacci(k+1)/Lucas(k). (End)
From Amiram Eldar, Nov 28 2024: (Start)
Equals A344212/2 = A296184/5 = A300074^2 = sqrt(A229780).
Equals Product_{k>=1} (1 - 1/A081007(k)). (End)
Equals 1 - A244847. - Amiram Eldar, Mar 18 2025

A134974 Decimal expansion of 4*(-1 + phi) = 4*A094214, where the golden ratio phi = A001622.

Original entry on oeis.org

2, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8
Offset: 1

Views

Author

Omar E. Pol, Nov 15 2007

Keywords

Comments

This equals the dimensionless q-entropy (Tsallis entropy) of the set of 5 probabilities {p_i = 1/5, i = 1..5} for q = 1/2, which is S/k = -(1 - 5*(1/5)^(1/2))/(1 - 1/2) (k is the Boltzmann constant). See the Wikipedia link. - Wolfdieter Lang, Dec 06 2018
This constant - 2 = 2*sqrt(5) - 4 is the area of a regular pentagram formed by connecting the vertices of a unit-area regular pentagon. - Amiram Eldar, Nov 12 2021

Examples

			2.47213595499957939281834733746255247...
		

Crossrefs

Programs

  • Maple
    evalf[100](8/(1+sqrt(5))); # Muniru A Asiru, Dec 19 2018
  • Mathematica
    RealDigits[4/GoldenRatio,10,120][[1]] (* Harvey P. Dale, Oct 30 2016 *)
  • PARI
    2*(sqrt(5)-1) \\ or: digits( % \1e-35). - M. F. Hasler, Dec 14 2018

Formula

Equals 4*(-1 + phi) = 4*A094214, where phi = A001622. This is an integer in the field Q(sqrt(5)).
Equals 4/phi = 8/(1 + sqrt(5)).
Equals 10*A020762-2 = A010476-2. - R. J. Mathar, Oct 27 2008
Equals 2*(sqrt(5) - 1) = 2*A134972. - M. F. Hasler, Dec 14 2018

Extensions

More terms from Harvey P. Dale, Oct 30 2016
Edited by Wolfdieter Lang, Dec 14 2018

A322159 Decimal expansion of 1 - 1/sqrt(5).

Original entry on oeis.org

5, 5, 2, 7, 8, 6, 4, 0, 4, 5, 0, 0, 0, 4, 2, 0, 6, 0, 7, 1, 8, 1, 6, 5, 2, 6, 6, 2, 5, 3, 7, 4, 4, 7, 5, 2, 9, 1, 1, 8, 7, 6, 3, 2, 8, 0, 7, 7, 6, 9, 4, 8, 5, 5, 1, 4, 5, 8, 2, 0, 5, 5, 0, 9, 1, 7, 8, 9, 5, 8, 1, 4, 8, 7, 2, 4, 3, 9, 0, 2, 0, 1, 1, 7, 1, 1, 7, 1, 1, 8, 3, 2, 4, 2, 4, 3, 5, 4, 5, 0, 0, 6
Offset: 0

Views

Author

Tristan Cam, Nov 29 2018

Keywords

Comments

Continued fraction: [0;1,1,4,4,4...].
Least root of the polynomial: 5x^2 - 10x + 4.

Examples

			0.552786404500042060718165266253744752911876328077...
		

Crossrefs

Programs

  • Maple
    evalf[110](1-1/sqrt(5)); # Muniru A Asiru, Dec 01 2018
  • Mathematica
    RealDigits[1-1/Sqrt[5], 10, 100][[1]] (* Amiram Eldar, Nov 29 2018 *)

Formula

Equals 1 - 1/A002163.
Equals 1/(1 - cos(4*Pi/5)) = (1/2)*csc(2*Pi/5)^2.
Also equal to 2/(phi*sqrt(5)) = 2/(A001622*A002163).
Equals 1 - A020762. - Andrew Howroyd, Nov 30 2018
From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A244847 = 1/A296182.
Equals Product_{k>=0} (1 - 1/A081010(k)). (End)

A020772 Decimal expansion of 1/sqrt(15).

Original entry on oeis.org

2, 5, 8, 1, 9, 8, 8, 8, 9, 7, 4, 7, 1, 6, 1, 1, 2, 5, 6, 7, 8, 6, 1, 7, 6, 9, 3, 3, 1, 8, 8, 2, 6, 6, 4, 0, 7, 2, 2, 1, 9, 4, 7, 8, 0, 3, 5, 2, 7, 7, 2, 7, 2, 1, 7, 7, 2, 5, 0, 4, 9, 1, 7, 7, 4, 0, 8, 9, 8, 8, 7, 2, 7, 9, 5, 7, 9, 8, 6, 0, 2, 2, 3, 4, 6, 1, 9, 1, 5, 8, 4, 5, 7, 2, 4, 4, 9, 0, 1
Offset: 0

Views

Author

Keywords

Comments

1/sqrt(15) = 0.258198889747161125678617693318826640722194780352772721772504917740898872796... [Vladimir Joseph Stephan Orlovsky, May 30 2010]

Programs

Formula

Equals 1/A010472 = A020760 * A020762. - R. J. Mathar, Nov 19 2024

A176453 Decimal expansion of 4+2*sqrt(5).

Original entry on oeis.org

8, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7, 5, 7, 5, 6, 4, 5, 4, 9, 9, 3, 9, 0, 1
Offset: 1

Views

Author

Klaus Brockhaus, Apr 20 2010

Keywords

Comments

Continued fraction expansion of 4+2*sqrt(5) is A010698 preceded by 8.
a(n) = A010476(n) = A020762(n-1) = A134974(n) for n > 1.
Rajan (2010) claims the variance of a discrete distribution generated by the linear convolution of Fibonacci sequence with itself, saturates to a constant of value 8.4721359. [From Jonathan Vos Post, May 10 2010]

Examples

			4+2*sqrt(5) = 8.47213595499957939281...
		

Crossrefs

Cf. A002163 (decimal expansion of sqrt(5)), A010476 (decimal expansion of sqrt(20)), A020762 (decimal expansion of 1/sqrt(5)), A134974 (decimal expansion of 8/(1+sqrt(5))), A010698 (repeat 2, 8).

Programs

  • Mathematica
    RealDigits[4+2Sqrt[5],10,120][[1]] (* Harvey P. Dale, Sep 08 2018 *)

A380862 Decimal expansion of the largest acute angles, in radians, in a deltoidal hexecontahedron face.

Original entry on oeis.org

1, 5, 1, 7, 9, 8, 5, 3, 7, 7, 4, 6, 0, 2, 1, 5, 4, 6, 3, 6, 0, 2, 1, 9, 1, 3, 5, 7, 3, 8, 6, 0, 7, 2, 4, 4, 8, 1, 7, 1, 2, 3, 3, 3, 8, 2, 5, 2, 7, 1, 6, 7, 2, 3, 0, 1, 0, 8, 0, 7, 6, 0, 2, 2, 4, 5, 5, 8, 8, 5, 1, 8, 3, 5, 3, 0, 5, 5, 1, 6, 4, 4, 8, 8, 2, 5, 1, 1, 8, 9
Offset: 1

Views

Author

Paolo Xausa, Feb 06 2025

Keywords

Comments

A deltoidal hexecontahedron face is a kite with one smallest acute angle (A380861), two largest acute angles (this constant) and one obtuse angle (A380863).

Examples

			1.517985377460215463602191357386072448171233382527...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[1/2 - 1/Sqrt[5]], 10, 100]]

Formula

Equals arccos(1/2 - 1/sqrt(5)) = arccos(1/2 - A020762).
Equals (2*Pi - A380861 - A380863)/2.

A023118 Signature sequence of 1/sqrt(5) (arrange the numbers i+j*x (i,j >= 1) in increasing order; the sequence of i's is the signature of x).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 6, 2, 3, 4, 5, 1, 6, 2, 3, 4, 5, 1, 6, 2, 7, 3, 4, 5, 1, 6, 2, 7, 3, 4, 5, 1, 6, 2, 7, 3, 8, 4, 5, 1, 6, 2, 7, 3, 8, 4, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 1
Offset: 1

Views

Author

Keywords

References

  • C. Kimberling, "Fractal Sequences and Interspersions", Ars Combinatoria, vol. 45 p 157 1997.

Crossrefs

Cf. A020762.

Programs

  • Mathematica
    signseq[n_] := Take[ Transpose[ Sort[ Flatten[ Table[{i + j*n, i}, {i, Max[15, 15n]}, {j, Max[15, 15/n]}], 1], #1[[1]] < #2[[1]] &]][[2]], 105]; signseq[1/Sqrt[5]] (* Robert G. Wilson v, Sep 20 2004 *)

Extensions

More terms from Robert G. Wilson v, Sep 20 2004
Showing 1-10 of 12 results. Next