cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A296182 Decimal expansion of (2 + phi)/2, with the golden section phi from A001622.

Original entry on oeis.org

1, 8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6
Offset: 1

Views

Author

Wolfdieter Lang, Jan 08 2018

Keywords

Comments

In a regular pentagon this is the distance between a vertex and the midpoint of the opposite side in units of the radius of the circumscribing circle.

Examples

			1.809016994374947424102293417182819058860154589902881431067724311352630231409451...
		

Crossrefs

Programs

Formula

Equals (2 + phi)/2 = (5 + sqrt(5))/4 = (2*phi - 1)*phi/2 = with phi from A001622.
Equals 1 + A019863.
From Amiram Eldar, Nov 28 2024: (Start)
Equals 1/A322159.
Equals Product_{k>=0} (1 + 1/A081003(k)). (End)

A214293 a(n) = 1 if n is a square, -1 if n is five times a square.

Original entry on oeis.org

1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Jul 10 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + q^4 - q^5 + q^9 + q^16 - q^20 + q^25 + q^36 - q^45 + q^49 + q^64 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma1(20), 1/2), 65) [2]; /* Michael Somos, Jul 01 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] - EllipticTheta[ 3, 0, q^5]) / 2,  {q, 0, n}];
    a[ n_] := If[ n < 0, 0, Boole[ OddQ [ Length @ Divisors @ n]] - Boole[ OddQ [ Length @ Divisors [5 n]]]];
  • PARI
    {a(n) = issquare(n) - issquare(5*n)};
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, if( p==5, 1 - X, 1) / (1 - X^2 ))[n])};
    

Formula

Expansion of (phi(q) - phi(q^5)) / 2 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Sep 24 2013
Expansion of q * f(q^3, q^7) * f(-q^4, -q^16) / f(-q^8, -q^12) in powers of q where f() is Ramanujan's two-variable theta function.
Expansion of q * f(x, x^9) * f(-q, -q^4) / f(-q^2, -q^3) in powers of q where f() is Ramanujan's two-variable theta function. - Michael Somos, Sep 24 2013
Euler transform of period 20 sequence [ 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, 1, 1, -1, 0, -1, 1, 0, 0, -1, ...].
Multiplicative with a(5^e) = (-1)^e, a(p^e) = 1 if e even, 0 otherwise.
G.f.: (theta_3(q) - theta_3(q^5)) / 2 = Sum_{k>0} x^(k^2) - x^(5*k^2).
Dirichlet g.f.: zeta(2*s) * (1 - 5^-s).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = a(n). a(5*n) = -a(n).
a(4*n) = A214293(n). a(4*n+1) = A214960(n). - Michael Somos, Sep 24 2013
Sum_{k=1..n} a(k) ~ c*sqrt(n), where c = 1 - 1/sqrt(5) = 0.5527864... (A322159). - Amiram Eldar, Oct 24 2023

A081010 a(n) = Fibonacci(4n+1) + 2, or Fibonacci(2n-1)*Lucas(2n+2).

Original entry on oeis.org

3, 7, 36, 235, 1599, 10948, 75027, 514231, 3524580, 24157819, 165580143, 1134903172, 7778742051, 53316291175, 365435296164, 2504730781963, 17167680177567, 117669030460996, 806515533049395, 5527939700884759, 37889062373143908, 259695496911122587
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A001519, A001906, A322159.

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n+1)+2); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+1) +2: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+1)+2) od # James Sellers, Mar 03 2003
  • Mathematica
    Fibonacci[4*Range[0,30]+1]+2 (* G. C. Greubel, Jul 14 2019 *)
  • PARI
    vector(30, n, n--; fibonacci(4*n+1)+2) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+1)+2 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = 2 + (A001906(n+1)^2 + A001519(n)^2)/2. - Creighton Dement, Aug 15 2004
G.f.: (3-17*x+4*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
Product_{n>=0} (1 - 1/a(n)) = 1 - 1/sqrt(5) = A322159. - Amiram Eldar, Nov 28 2024

Extensions

More terms from James Sellers, Mar 03 2003

A081013 a(n) = Fibonacci(4*n+3) - 2, or Fibonacci(2*n)*Lucas(2*n+3).

Original entry on oeis.org

0, 11, 87, 608, 4179, 28655, 196416, 1346267, 9227463, 63245984, 433494435, 2971215071, 20365011072, 139583862443, 956722026039, 6557470319840, 44945570212851, 308061521170127, 2111485077978048, 14472334024676219
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A322159.

Programs

  • GAP
    List([0..40], n-> Fibonacci(4*n+3) -2); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+3)-2: n in [0..40]]; // Vincenzo Librandi, Apr 20 2011
    
  • Magma
    [Fibonacci(4*n+3)-2: n in [0..40]]; // G. C. Greubel, Jul 14 2019
    
  • Maple
    with(combinat) for n from 0 to 40 do printf(`%d,`,fibonacci(4*n+3)-2) od # James Sellers, Mar 03 2003
  • Mathematica
    LinearRecurrence[{8,-8,1},{0,11,87},40] (* Harvey P. Dale, Dec 05 2013 *)
    Table[Fibonacci[2n] LucasL[2n+3], {n,1,40}] (* Rigoberto Florez, Apr 20 2019 *)
    Table[Sum[Binomial[2n-1+i, 2n-1-i], {i, 1, 2n-1}]-1, {n, 1, 40}] (* Rigoberto Florez, Apr 20 2019 *)
  • PARI
    my(x='x+O('x^40)); concat([0], Vec(x*(11-x)/((1-x)*(1-7*x+x^2)))) \\ G. C. Greubel, Dec 24 2017
    
  • PARI
    vector(40, n, n--; fibonacci(4*n+3)-2) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+3)-2 for n in (0..40)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
From R. J. Mathar, Sep 03 2010: (Start)
G.f.: x*(11 - x)/((1-x)*(1-7*x+x^2)).
a(n) = A033891(n) - 2.
a(n+1) - a(n) = A056914(n+1), n>0. (End)
a(n) = 7*a(n-1) - a(n-2) + 10, n>=2. - R. J. Mathar, Nov 07 2015
From Rigoberto Florez, Apr 20 2019: (Start)
a(n) = Sum_{i=0..2n} F(i)*L(i+2), F(i) = A000045(i) and L(i) = A000032(i).
a(n) = (Sum_{i=1..2n-1} binomial(2n-1+i,2n-1-i)) - 1. (End)
Product_{n>=1} (1 + 1/a(n)) = 2*(1-1/sqrt(5)) = 2*A322159. - Amiram Eldar, Nov 28 2024
Showing 1-4 of 4 results.