cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A019863 Decimal expansion of sin(3*Pi/10) (sine of 54 degrees, or cosine of 36 degrees).

Original entry on oeis.org

8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622). - Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of Barak-Hardt-Haviv-Rao with Dinur-Steurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.) - Charles R Greathouse IV, May 15 2014
This is the height h of the isosceles triangle in a regular pentagon, in length units of the circumscribing radius, formed by a side as base and two adjacent radii. h = sin(3*Pi/10) = cos(Pi/5) (radius 1 unit). - Wolfdieter Lang, Jan 08 2018
Also the limiting value(L) of "r" which is abscissa of the vertex of the parabola F(n)*x^2 - F(n+1)*x + F(n + 2)(where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Feb 24 2021

Examples

			0.80901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).

Programs

Formula

Equals (1+sqrt(5))/4 = cos(Pi/5) = sin(3*Pi/10). - R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2. - R. J. Mathar, Oct 27 2008
Equals A001622 / 2. - Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(-2/5)) / 2 = i^(2/5) - (sin(Pi/5))*i = i^(-2/5) + (sin(Pi/5))*i = i^(2/5) - (cos(3*Pi/10))*i = i^(-2/5) + (cos(3*Pi/10))*i. - Jaroslav Krizek, Feb 03 2014
Equals 1/A134972. - R. J. Mathar, Jan 17 2021
Equals 2*A019836*A019872. - R. J. Mathar, Jan 17 2021
Equals (A094214 + 1)/2 or 1/(2*A094214). - Burak Muslu, Feb 24 2021
Equals hypergeom([-2/5, -3/5], [6/5], -1) = hypergeom([-1/5, 3/5], [6/5], 1) = hypergeom([1/5, -3/5], [4/5], 1). - Peter Bala, Mar 04 2022
Equals Product_{k>=1} (1 - (-1)^k/A001611(k)). - Amiram Eldar, Nov 28 2024
Equals 2*A134944 = 3*A134946 = A187426-11/10 = A296182-1. - Hugo Pfoertner, Nov 28 2024
Equals A134945/4. Root of 4*x^2-2*x-1=0. - R. J. Mathar, Aug 29 2025

A179133 Denominators of A178381(4*n+3)/A178381(4*n+2).

Original entry on oeis.org

2, 4, 5, 26, 68, 89, 466, 1220, 1597, 8362, 21892, 28657, 150050, 392836, 514229, 2692538, 7049156, 9227465, 48315634, 126491972, 165580141, 866988874, 2269806340, 2971215073, 15557484098, 40730022148, 53316291173, 279167724890
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the numerators see A128052.

Crossrefs

Programs

  • Maple
    with(GraphTheory): nmax:=120; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+3)/A178381(4*n+2)) od: seq(a(n),n=0..nmax/4-1);
  • Mathematica
    Flatten[Table[{2*Fibonacci[6 n + 1], 2*Fibonacci[6 n + 3],
    Fibonacci[6 n + 5]}, {n, 0, 10}]] (* Greg Dresden, Oct 16 2021 *)
    LinearRecurrence[{0,0,18,0,0,-1},{2,4,5,26,68,89},30] (* Harvey P. Dale, Oct 08 2024 *)

Formula

a(n) = A179134(n)*A153727(n+1)/2.
Lim_{n->infinity} A128052(n+1)/A179133(n) = 1+cos(Pi/5) = A296182.
From Colin Barker, Jun 27 2013: (Start)
G.f.: -(x^5+4*x^4+10*x^3-5*x^2-4*x-2)/((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)).
a(n) = 18*a(n-3)-a(n-6). (End)
From Greg Dresden, Oct 16 2021: (Start)
a(3*n) = 2*Fibonacci(6*n+1),
a(3*n+1) = 2*Fibonacci(6*n+3),
a(3*n+2) = Fibonacci(6*n+5). (End)

A179131 Numerators of A178381(4*n+1)/A178381(4*n).

Original entry on oeis.org

1, 5, 25, 65, 85, 445, 1165, 1525, 7985, 20905, 27365, 143285, 375125, 491045, 2571145, 6731345, 8811445, 46137325, 120789085, 158114965, 827900705, 2167472185, 2837257925, 14856075365, 38893710245, 50912527685, 266581455865
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the denominators see A179132.

Crossrefs

Programs

  • Maple
    with(GraphTheory): nmax:=116; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= numer(A178381(4*n+1)/A178381(4*n)) od: seq(a(n),n=0..nmax/4-1);

Formula

a(n) = 5*A167808(2*n+1) for n>=1.
Limit(A179131(n)/A179132(n), n =infinity) = 1+cos(Pi/5) = A296182.
a(n) = 18*a(n-3)-a(n-6) for n>6. G.f.: -(4*x^6+5*x^5+5*x^4-47*x^3-25*x^2-5*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013

A179132 Denominators of A178381(4*n+1)/A178381(4*n).

Original entry on oeis.org

1, 3, 14, 36, 47, 246, 644, 843, 4414, 11556, 15127, 79206, 207364, 271443, 1421294, 3720996, 4870847, 25504086, 66770564, 87403803, 457652254, 1198149156, 1568397607, 8212236486, 21499914244, 28143753123, 147362604494
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Comments

For the numerators see A179131.

Crossrefs

Cf. A128052 and A179133.

Programs

  • Maple
    with(GraphTheory): nmax:=116; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax-1 do a(n):= denom(A178381(4*n+1)/A178381(4*n)) od: seq(a(n),n=0..nmax/4-1);
  • Mathematica
    LinearRecurrence[{0,0,18,0,0,-1},{1,3,14,36,47,246,644},30] (* Harvey P. Dale, Jun 11 2022 *)

Formula

a(n) = A069705(n-1)*A128052(n) for n>=1.
Limit(A179131(n)/A179132(n), n =infinity) = 1+cos(Pi/5) = A296182.
a(n) = 18*a(n-3)-a(n-6) for n>6. G.f.: -(3*x^6+6*x^5+7*x^4-18*x^3-14*x^2-3*x-1) / ((x^2-3*x+1)*(x^4+3*x^3+8*x^2+3*x+1)). - Colin Barker, Jun 27 2013

A322159 Decimal expansion of 1 - 1/sqrt(5).

Original entry on oeis.org

5, 5, 2, 7, 8, 6, 4, 0, 4, 5, 0, 0, 0, 4, 2, 0, 6, 0, 7, 1, 8, 1, 6, 5, 2, 6, 6, 2, 5, 3, 7, 4, 4, 7, 5, 2, 9, 1, 1, 8, 7, 6, 3, 2, 8, 0, 7, 7, 6, 9, 4, 8, 5, 5, 1, 4, 5, 8, 2, 0, 5, 5, 0, 9, 1, 7, 8, 9, 5, 8, 1, 4, 8, 7, 2, 4, 3, 9, 0, 2, 0, 1, 1, 7, 1, 1, 7, 1, 1, 8, 3, 2, 4, 2, 4, 3, 5, 4, 5, 0, 0, 6
Offset: 0

Views

Author

Tristan Cam, Nov 29 2018

Keywords

Comments

Continued fraction: [0;1,1,4,4,4...].
Least root of the polynomial: 5x^2 - 10x + 4.

Examples

			0.552786404500042060718165266253744752911876328077...
		

Crossrefs

Programs

  • Maple
    evalf[110](1-1/sqrt(5)); # Muniru A Asiru, Dec 01 2018
  • Mathematica
    RealDigits[1-1/Sqrt[5], 10, 100][[1]] (* Amiram Eldar, Nov 29 2018 *)

Formula

Equals 1 - 1/A002163.
Equals 1/(1 - cos(4*Pi/5)) = (1/2)*csc(2*Pi/5)^2.
Also equal to 2/(phi*sqrt(5)) = 2/(A001622*A002163).
Equals 1 - A020762. - Andrew Howroyd, Nov 30 2018
From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A244847 = 1/A296182.
Equals Product_{k>=0} (1 - 1/A081010(k)). (End)

A081003 a(n) = Fibonacci(4n+1) + 1, or Fibonacci(2n+1)*Lucas(2n).

Original entry on oeis.org

2, 6, 35, 234, 1598, 10947, 75026, 514230, 3524579, 24157818, 165580142, 1134903171, 7778742050, 53316291174, 365435296163, 2504730781962, 17167680177566, 117669030460995, 806515533049394, 5527939700884758, 37889062373143907, 259695496911122586
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A296182.

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n+1)+1); # G. C. Greubel, Jul 15 2019
  • Magma
    [Fibonacci(4*n+1) +1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    with(combinat): for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+1)+1) od:  # James Sellers, Mar 03 2003
  • Mathematica
    Fibonacci[4*Range[0,30]+1]+1 (* or *) LinearRecurrence[{8,-8,1}, {2,6,35}, 30] (* Harvey P. Dale, Jul 20 2011 *)
  • PARI
    vector(30, n, n--; fibonacci(4*n+1)+1) \\ G. C. Greubel, Jul 15 2019
    
  • Sage
    [fibonacci(4*n+1)+1 for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (2-10*x+3*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012
Product_{n>=0} (1 + 1/a(n)) = (2 + phi)/2 (A296182). - Amiram Eldar, Nov 28 2024

Extensions

More terms from James Sellers, Mar 03 2003
Showing 1-6 of 6 results.