cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A090771 Numbers that are congruent to {1, 9} mod 10.

Original entry on oeis.org

1, 9, 11, 19, 21, 29, 31, 39, 41, 49, 51, 59, 61, 69, 71, 79, 81, 89, 91, 99, 101, 109, 111, 119, 121, 129, 131, 139, 141, 149, 151, 159, 161, 169, 171, 179, 181, 189, 191, 199, 201, 209, 211, 219, 221, 229, 231, 239, 241, 249, 251, 259, 261, 269, 271, 279, 281
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 07 2004

Keywords

Comments

Cf. property described by Gary Detlefs in A113801: more generally, these numbers are of the form (2*h*n + (h-4)*(-1)^n - h)/4 (h, n natural numbers), therefore ((2*h*n + (h-4)*(-1)^n - h)/4)^2-1 == 0 (mod h); in this case, a(n)^2 - 1 == 0 (mod 10). - Bruno Berselli, Nov 17 2010

Crossrefs

Cf. A056020 (n = 1 or 8 mod 9), A175885 (n = 1 or 10 mod 11).
Cf. A045468 (primes), A195142 (partial sums).

Programs

Formula

a(n) = sqrt(40*A057569(n) + 1). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Sep 16 2010 - Nov 17 2010: (Start)
G.f.: x*(1 + 8*x + x^2)/((1 + x)*(1 - x)^2).
a(n) = (10*n + 3*(-1)^n - 5)/2.
a(n) = -a(-n + 1) = a(n-1) + a(n-2) - a(n-3) = a(n-2) + 10.
a(n) = 10*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
a(n) = 10*n - a(n-1) - 10 (with a(1) = 1). - Vincenzo Librandi, Nov 16 2010
a(n) = sqrt(10*A132356(n-1) + 1). - Ivan N. Ianakiev, Nov 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/10)*cot(Pi/10) = A000796 * A019970 / 10 = sqrt(5 + 2*sqrt(5))*Pi/10. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((10*x - 5)*exp(x) + 3*exp(-x))/2. - David Lovler, Sep 03 2022
From Amiram Eldar, Nov 23 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(phi+2) (A188593).
Product_{n>=2} (1 + (-1)^n/a(n)) = Pi*phi/5 = A094888/10. (End)

Extensions

Edited and extended by Ray Chandler, Feb 10 2004

A182007 Decimal expansion of 2*sin(Pi/5).

Original entry on oeis.org

1, 1, 7, 5, 5, 7, 0, 5, 0, 4, 5, 8, 4, 9, 4, 6, 2, 5, 8, 3, 3, 7, 4, 1, 1, 9, 0, 9, 2, 7, 8, 1, 4, 5, 5, 3, 7, 1, 9, 5, 3, 0, 4, 8, 7, 5, 2, 8, 6, 2, 9, 1, 9, 8, 2, 1, 4, 4, 5, 4, 4, 9, 6, 1, 5, 1, 4, 5, 5, 6, 9, 4, 8, 3, 2, 4, 7, 0, 3, 9, 1, 5, 0, 1, 7, 0, 0
Offset: 1

Views

Author

Stanislav Sykora, Apr 06 2012

Keywords

Comments

The golden ratio phi is the real part of 2*exp(i*Pi/5), while this constant c is the corresponding imaginary part. It is handy, for example, in simplifying metric expressions for Platonic solids (particularly for regular icosahedron and dodecahedron).
Note that c^2+A001622^2 = 4; c*A001622 = A188593 = 2*A019881; c = 2*A019845.
Edge length of a regular pentagon with unit circumradius. - Stanislav Sykora, May 07 2014
This is a constructible number (see A003401 for more details). Moreover, since phi is also constructible, (2^k)*exp(i*Pi/5), for any integer k, is a constructible complex number. - Stanislav Sykora, May 02 2016
rms(c, phi) := sqrt((c^2+phi^2)/2) = sqrt(2) = A002193.

Examples

			1.1755705045849462583374119...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2*Sin(Pi(R)/5); // G. C. Greubel, Nov 02 2018
  • Maple
    evalf(2*sin(Pi/5),100); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    RealDigits[2*Sin[Pi/5],10,120][[1]] (* Harvey P. Dale, Sep 29 2012 *)
  • PARI
    2*sin(Pi/5) \\ Stanislav Sykora, May 02 2016
    

Formula

Equals sqrt(3-phi).
Equals sqrt((5-sqrt(5))/2). - Jean-François Alcover, May 21 2013
Equals Product_{k>=0} ((10*k + 4)*(10*k + 6))/((10*k + 3)*(10*k + 7)). - Antonio Graciá Llorente, Mar 25 2024
Equals Product_{k>=1} (1 - (-1)^k/A063226(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A019845 = 1/A300074. - Hugo Pfoertner, Nov 23 2024

A005531 Decimal expansion of fifth root of 2.

Original entry on oeis.org

1, 1, 4, 8, 6, 9, 8, 3, 5, 4, 9, 9, 7, 0, 3, 5, 0, 0, 6, 7, 9, 8, 6, 2, 6, 9, 4, 6, 7, 7, 7, 9, 2, 7, 5, 8, 9, 4, 4, 3, 8, 5, 0, 8, 8, 9, 0, 9, 7, 7, 9, 7, 5, 0, 5, 5, 1, 3, 7, 1, 1, 1, 1, 8, 4, 9, 3, 6, 0, 3, 2, 0, 6, 2, 5, 3, 5, 1, 3, 0, 5, 6, 8, 1, 1, 4, 7, 3, 1, 1, 3, 0, 1, 1, 5, 0, 8, 4, 7, 3, 9, 1, 4, 5, 7
Offset: 1

Views

Author

Keywords

Comments

The sine of 2017 times this number is the near-integer 0.999999999999999978567771261.... - Alonso del Arte, May 03 2013
With the present number r = 2^(1/5) and the golden section phi = A001622 the other (complex) roots of x^5 - 2 are given by x1 = r*exp(2*Pi*i/5) = r*(phi - 1 + sqrt(2 + phi)*i)/2 = r*(A001622 - 1 + A188593*i)/2 = 0.3549673131... + 1.0924770557...*i, x2 = r*exp(4*Pi*i/5) = r*(-phi + sqrt(3 - phi)*i)/2 = r*(-A001622 + A182007*i)/2 = -0.9293164906... + 0.6751879523...*i, and their complex conjugates. - Wolfdieter Lang, Dec 06 2022

Examples

			1.148698354997035006798626946777927589443850889097797505513711118493603....
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002950 (continued fraction).
Cf. A002580 (cube root of 2).

Programs

  • Mathematica
    RealDigits[N[2^(1/5),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *)
    RealDigits[Surd[2,5],10,120][[1]] (* Harvey P. Dale, May 08 2025 *)
  • PARI
    { default(realprecision, 20080); x=2^(1/5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005531.txt", n, " ", d)); } \\ Harry J. Smith, May 12 2009

Formula

Equals Product_{k>=0} (1 + (-1)^k/(5*k + 4)). - Amiram Eldar, Jul 25 2020
From Peter Bala, Mar 02 2022: (Start)
Equals (3/2)*Sum_{n >= 0} (1/(5*n+2) - 1/(5*n-3))*binomial(1/5,n). Cf. A002580.
Equals (5/4)*hypergeom([-1/5, -3/5], [7/5], -1). (End)

Extensions

More terms from Olaf Voß, Feb 13 2008

A188618 Decimal expansion of (diagonal)/(shortest side) of 1st electrum rectangle.

Original entry on oeis.org

1, 6, 9, 2, 9, 3, 3, 9, 6, 3, 2, 0, 8, 3, 8, 1, 8, 0, 7, 3, 0, 6, 2, 9, 6, 0, 3, 2, 1, 5, 5, 5, 9, 6, 2, 2, 3, 0, 5, 9, 1, 0, 3, 1, 2, 5, 6, 1, 4, 3, 7, 6, 4, 6, 7, 0, 6, 9, 4, 2, 7, 3, 9, 1, 6, 6, 2, 0, 3, 9, 5, 7, 7, 3, 0, 2, 1, 5, 6, 7, 4, 5, 5, 9, 2, 7, 8, 3, 1, 5, 3, 7, 9, 6, 5, 8, 6, 5, 7, 4, 1, 2, 0, 0, 2, 0, 0, 2, 8, 4, 4, 6, 4, 5, 9, 5, 8, 7, 0, 2, 9, 6, 6, 9, 5, 0, 3, 4, 7, 1
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2011

Keywords

Comments

The 1st electrum rectangle is introduced here as a rectangle whose length L and width W satisfy L/W=(1+sqrt(3))/2. The name of this shape refers to the alloy of gold and silver known as electrum, in view of the existing names "golden rectangle" and "silver rectangle" and these continued fractions:
golden ratio: L/W=[1,1,1,1,1,1,1,1,1,1,1,...]
silver ratio: L/W=[2,2,2,2,2,2,2,2,2,2,2,...]
1st electrum ratio: L/W=[1,2,1,2,1,2,1,2,...]
2nd electrum ratio: L/W=[2,1,2,1,2,1,2,1,...].
Recall that removal of 1 square from a golden rectangle leaves a golden rectangle, and that removal of 2 squares from a silver rectangle leaves a silver rectangle. Removal of a square from a 1st electrum rectangle leaves a silver rectangle; removal of 2 squares from a 2nd electrum rectangle leaves a golden rectangle.

Examples

			1.6929339632083818...
		

Crossrefs

Cf. A188593 (golden), A121601 (silver), A188619 (2nd electrum).

Programs

  • Mathematica
    h=(1+3^(1/2))/2; (* continued fraction: h=[1,2,1,2,...]. *)
    r=(1+h^2)^(1/2);
    RealDigits[N[r, 130]][[1]]

Formula

Equals sqrt(2+(1/2)sqrt(3)).

A188619 Decimal expansion of (diagonal)/(shortest side) of 2nd electrum rectangle.

Original entry on oeis.org

2, 9, 0, 9, 3, 1, 2, 9, 1, 1, 1, 7, 6, 4, 0, 9, 4, 6, 4, 6, 0, 9, 7, 9, 9, 1, 3, 2, 0, 2, 0, 5, 2, 7, 5, 7, 1, 4, 7, 6, 9, 8, 6, 1, 8, 8, 3, 7, 9, 9, 3, 0, 3, 0, 1, 3, 3, 6, 8, 2, 8, 4, 6, 7, 5, 3, 4, 4, 4, 4, 3, 3, 8, 4, 4, 6, 6, 4, 0, 3, 8, 7, 6, 8, 7, 8, 1, 1, 3, 8, 7, 2, 2, 3, 7, 1, 0, 3, 2, 7, 1, 2, 0, 3, 0, 2, 5, 4, 2, 8, 1, 3, 0, 3, 1, 9, 9, 1, 8, 6, 0, 7, 8, 0, 5, 6, 3, 5, 0, 4
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2011

Keywords

Comments

The 2nd electrum rectangle is introduced here as a rectangle whose length L and width W satisfy L/W=1+sqrt(3). The name of this shape refers to the alloy of gold and silver known as electrum, in view of the existing names "golden rectangle" and "silver rectangle" and these continued fractions:
golden ratio: L/W=[1,1,1,1,1,1,1,1,1,1,1,...]
silver ratio: L/W=[2,2,2,2,2,2,2,2,2,2,2,...]
1st electrum ratio: L/W=[1,2,1,2,1,2,1,2,...]
2nd electrum ratio: L/W=[2,1,2,1,2,1,2,1,...].
Recall that removal of 1 square from a golden rectangle leaves a golden rectangle, and that removal of 2 squares from a silver rectangle leaves a silver rectangle. Removal of a square from a 1st electrum rectangle leaves a silver rectangle; removal of 2 squares from a 2nd electrum rectangle leaves a golden rectangle.

Examples

			(diagonal/shortest side) = 2.9093129111764094646 approximately.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.13 Steinitz Constants, p. 241.

Crossrefs

Cf. A188593 (golden), A121601 (silver), A188618 (1st electrum).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt(5+2*Sqrt(3)); // G. C. Greubel, Nov 02 2018
  • Mathematica
    h = 1 + 3^(1/2); r = (1 + h^2)^(1/2)
    FullSimplify[r]
    N[r, 130] (* ratio of diagonal h to shortest side; h=[1,2,1,2,1,2,...] *)
    RealDigits[N[r, 130]][[1]]
    RealDigits[Sqrt[5 + 2*Sqrt[3]], 10, 100][[1]] (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    default(realprecision, 100); sqrt(5+2*sqrt(3)) \\ G. C. Greubel, Nov 02 2018
    

Formula

Equals sqrt(5+2*sqrt(3)).

A158934 Decimal expansion of xi = (cos(Pi/5) - 1/2) / (sin(Pi/5) + 1/2).

Original entry on oeis.org

2, 8, 4, 0, 7, 9, 0, 4, 3, 8, 4, 0, 4, 1, 2, 2, 9, 6, 0, 2, 8, 2, 9, 1, 8, 3, 2, 3, 9, 3, 1, 2, 6, 1, 6, 9, 0, 9, 1, 0, 8, 8, 0, 8, 8, 4, 4, 5, 7, 3, 7, 5, 8, 2, 7, 5, 9, 1, 6, 2, 6, 6, 6, 1, 5, 5, 0, 4, 5, 8, 7, 7, 3, 5, 1, 4, 8, 4, 5, 5, 3, 7, 3, 0, 3, 7, 8, 4, 1, 7, 7, 5, 2, 2, 3, 1, 6, 2, 5, 8, 6, 7, 0, 4
Offset: 0

Views

Author

Benoit Cloitre, Mar 31 2009

Keywords

Comments

This constant xi arises in the Davenport-Heilbronn zeta-function Z(s)=Sum_{k>=1} b(k)/k^s where b(k) is the 5-periodic sequence with period [1,xi,-xi,0]. Z satisfies a functional equation (like zeta) but does not satisfy RH. Some nontrivial zeros are off the critical line (see reference).

Examples

			0.2840790438404122960282...
		

References

  • Peter Borwein, Stephen Choi, Brendan Rooney and Andrea Weirathmueller, The Riemann Hypothesis, Springer, 2009, pp. 136-137.

Crossrefs

Programs

  • Mathematica
    (Sqrt[5]-1) / (2+Sqrt[10-2*Sqrt[5]]) // RealDigits[#, 10, 104]& // First (* Jean-François Alcover, Mar 04 2013 *)
  • PARI
    xi=(cos(Pi/5)-1/2)/(sin(Pi/5)+1/2)

Formula

Equals (sqrt(10-2*sqrt(5))-2)/(sqrt(5)-1).
Equals (A001622-1)/(2*A019845+1). - R. J. Mathar, Apr 02 2009
Equals sqrt((5 + sqrt(5))/2) - (sqrt(5) + 1)/2 = A188593 - A001622. - Amiram Eldar, Jan 23 2022

A337301 Triangle read by rows in which row n lists the closest integers to diagonal lengths of regular n-gon with unit edge length, n >= 4.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2
Offset: 4

Views

Author

Mohammed Yaseen, Aug 22 2020

Keywords

Examples

			Triangle begins:
1;
2, 2;
2, 2, 2;
2, 2, 2, 2;
2, 2, 3, 2, 2;
2, 3, 3, 3, 3, 2;
2, 3, 3, 3, 3, 3, 2;
2, 3, 3, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 3, 3, 2;
2, 3, 3, 4, 4, 4, 4, 3, 3, 2;
2, 3, 4, 4, 4, 4, 4, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 4, 4, 3, 2;
2, 3, 4, 4, 5, 5, 5, 5, 5, 4, 4, 3, 2;
...
Row n lists the closest integers to the length of the diagonals drawn from a fixed vertex of a regular n-gon with unit edge length, n >= 4.
The lengths of the diagonals drawn from vertex A of a regular 8-gon ABCDEFGH with unit edge length are:
AC = 1.84775...
AD = 2.41421...
AE = 2.61312...
AF = 2.41421...
AG = 1.84775...
So the row for n=8 is 2, 2, 3, 2, 2.
		

Crossrefs

Cf. A064313.
Decimal expansion of diagonal lengths of regular n-gons with unit edge length:
n=4 A002193.
n=5 A001622.
n=9 A332437.
n=11 A231186.

Programs

  • Mathematica
    T[n_,k_]:=Round[Sin[(k+1)*Pi/n]/Sin[Pi/n]]; Flatten[Table[T[n,k],{n,4,16},{k,1,n-3}]] (* Stefano Spezia, Sep 07 2020 *)

Formula

T(n,k) = round(sin((k+1)*Pi/n)/sin(Pi/n)), n >= 4, 1 <= k <= n-3.

A348757 Decimal expansion of the area of a regular pentagram inscribed in a unit-radius circle.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 9, 9, 4, 1, 4, 4, 8, 9, 6, 3, 4, 3, 1, 1, 0, 4, 8, 6, 2, 8, 7, 9, 4, 9, 3, 8, 1, 6, 9, 6, 8, 9, 4, 8, 0, 3, 1, 2, 0, 5, 8, 0, 2, 7, 0, 8, 7, 9, 8, 4, 8, 6, 1, 9, 6, 5, 8, 5, 4, 2, 2, 0, 1, 8, 8, 9, 1, 1, 9, 7, 5, 5, 2, 0, 6, 6, 4, 9, 1, 0, 7, 6, 4, 4, 3, 7, 7, 3, 3, 5, 6, 4, 5, 1, 2, 2, 1, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Comments

An algebraic number of degree 4. The smaller of the two positive roots of the equation 16*x^4 - 2500*x^2 + 3125 = 0.

Examples

			1.12256994144896343110486287949381696894803120580270...
		

References

  • Robert B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press, 2012, p. 15.

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Sin[Pi/5]/GoldenRatio^2, 10, 100][[1]]

Formula

Equals 5*sin(Pi/5)/phi^2, where phi is the golden ratio (A001622).
Equals 5/(cot(Pi/5) + cot(Pi/10)).
Equals 10*tan(Pi/10)/(3 - tan(Pi/10)^2).
Equals (5/2)*sqrt((25 -11*sqrt(5))/2).
Equals 5*(5 - sqrt(5))/(4*sqrt(5 + 2*sqrt(5))) = A094874 * A179050 = 10 * A094874 / A344172.

A358938 Decimal expansion of the real root of 2*x^5 - 1.

Original entry on oeis.org

8, 7, 0, 5, 5, 0, 5, 6, 3, 2, 9, 6, 1, 2, 4, 1, 3, 9, 1, 3, 6, 2, 7, 0, 0, 1, 7, 4, 7, 9, 7, 4, 6, 0, 9, 8, 9, 7, 9, 1, 2, 5, 4, 2, 4, 3, 4, 8, 0, 0, 3, 0, 4, 8, 2, 4, 1, 8, 5, 9, 5, 6, 8, 5, 0, 6, 7, 5, 0, 0, 1, 7, 7, 5, 2, 4
Offset: 0

Views

Author

Wolfdieter Lang, Dec 07 2022

Keywords

Comments

This is the reciprocal of A005531.
The other two complex conjugate pairs of roots are obtained, with the present number r = (1/2)^(1/5) and the golden section phi (A001622), from x1 = r*exp(Pi*i*2/5) = r*(phi - 1 + sqrt(2 + phi)*i)/2 = r*(A001622 - 1 + A188593*i)/2 = 0.2690149185... + 0.8279427859...*i, x2 = r*exp(Pi*i*4/5) = r*(-phi + sqrt(3 - phi)*i)/2 = r*(-A001622 + A182007*i)/2 = -0.7042902001... + 0.5116967824...*i.

Examples

			0.87055056329612413913627001747974609897912542434800304824185956850675...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[1/2, 5], 10, 120][[1]] (* Amiram Eldar, Dec 07 2022 *)

Formula

r = (1/2)^(1/5) = 1/A005531.
Equals A011101/2. - Hugo Pfoertner, Mar 24 2025
Showing 1-9 of 9 results.