A091667 Decimal expansion of ((-1-sqrt(5))/2 + sqrt((5+sqrt(5))/2))*e^((2*Pi)/5).
9, 9, 8, 1, 3, 6, 0, 4, 4, 5, 9, 8, 5, 0, 9, 3, 3, 2, 1, 5, 0, 0, 2, 4, 4, 5, 9, 0, 4, 7, 0, 7, 4, 7, 3, 5, 3, 1, 1, 3, 8, 2, 9, 9, 4, 7, 6, 3, 0, 4, 3, 9, 8, 2, 1, 8, 5, 5, 8, 3, 8, 7, 4, 0, 7, 0, 3, 5, 0, 3, 2, 4, 6, 8, 9, 4, 6, 4, 4, 1, 3, 3, 5, 7, 7, 1, 7, 7, 2, 7, 0, 8, 6, 7, 5, 0, 5, 8, 2, 6, 1, 7, 9, 4, 8
Offset: 0
Examples
0.998136044...
References
- K. Srinivas Rao, Ramanujan, a Mathematical Genius, Eastwest Books, Chennai Madras, 2000, p. 42.
- Bruce C. Berndt and Robert A. Rankin, Ramanujan: Letters And Commentary, AMS, Providence RI, 1995, p. 29.
- Bruce C. Berndt and Robert A. Rankin, Ramanujan: Essays And Surveys, AMS, Providence RI, 2001, p. 243.
- G. H. Hardy, Ramanujan: Twelve Lectures on subjects as suggested by his Life and Work, AMS, Chelsea Providence RI, 1999, p. 8, section 1.11.
Links
- Horst Gierhardts, Three Famous Formulas Of Ramanujan.
- Srinivasa Ramanujan, Journal of the Indian Mathematical Society, Question 352 (iv, 40).
- Eric Weisstein's World of Mathematics, Ramanujan Continued Fractions.
- Wikipedia, Ramanujan's continued fractions.
Programs
-
Mathematica
RealDigits[Exp[2*Pi/5]*(Sqrt[(Sqrt[5] + 5)/2] - GoldenRatio), 10, 100][[1]] (* Amiram Eldar, Jan 23 2022 *)
-
PARI
{a(n)=x=exp(2/5*Pi)*(sqrt((5+sqrt(5))/2)-(1+sqrt(5))/2); floor(x*10^(n+1))%10} /* Michael Somos, Sep 12 2005 */
-
PARI
{a(n)= x=exp(-2*Pi); x=contfracpnqn(matrix(2,oo,i,j,if(j==1,i==1,if(i==1,x,1)^(j-2)))); x=t[1,1]/t[2,1]; floor(x*10^(n+1))%10} /* Michael Somos, Sep 12 2005 */
Formula
Equals 1/A091899.
Equals exp(2*Pi/5) * A158934. - Amiram Eldar, Jan 23 2022
Comments