cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A137218 Decimal expansion of the argument of -1 + 2*i.

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 3, 9, 3, 5, 7, 9, 5, 7, 0, 2, 7, 3, 5, 4, 4, 5, 5, 7, 7, 9, 2, 3, 1, 0, 0, 9, 6, 5, 8, 4, 4, 1, 2, 7, 1, 2, 1, 7, 5, 3, 9, 7, 3, 6, 7, 3, 1, 7, 4, 2, 9, 8, 4, 0, 5, 3, 8, 4, 8, 7, 4, 1, 0, 6, 0, 6, 7, 3, 0, 8, 8, 4, 6, 2, 0, 4, 6, 1, 4, 6, 1, 7, 6, 9, 6, 6, 5, 5, 9, 4, 6, 4, 2, 6, 5, 4, 7, 6, 0
Offset: 1

Views

Author

Matt Rieckman (mjr162006(AT)yahoo.com), Mar 06 2008

Keywords

Comments

Gives closed forms for many arctangent values:
arctan(2) = Pi - a, arctan(1/2) = a - Pi/2,
arctan(3) = a - Pi/4, arctan(1/3) = 3*Pi/4 - a,
arctan(7) = 7*Pi/4 - 2*a, arctan(1/7) = 2*a - 5*Pi/4,
arctan(4/3) = 2*a - Pi and arctan(3/4) = 3*Pi/2 - 2*a.
Dihedral angle in the dodecahedron (radians). - R. J. Mathar, Mar 24 2012
Larger interior angle (in radians) of a golden rhombus; A105199 is the smaller interior angle. - Eric W. Weisstein, Dec 17 2018

Examples

			2.0344439357957027354455779231...
		

Crossrefs

Platonic solids' dihedral angles: A137914 (tetrahedron), A156546 (octahedron), A019669 (cube), A236367 (icosahedron). - Stanislav Sykora, Jan 23 2014
Cf. A242723 (same in degrees).
Cf. A105199 (smaller interior angle of the golden rhombus).

Programs

  • Mathematica
    RealDigits[Pi - ArcTan[2], 10, 120][[1]] (* Harvey P. Dale, Aug 08 2014 *)
  • PARI
    default(realprecision, 120);
    acos(-1/sqrt(5)) \\ or
    arg(-1+2*I) \\ Rick L. Shepherd, Jan 26 2014

Formula

Equals Pi - arctan(2) = A000796 - A105199 = 2*A195723.

Extensions

Corrected a typo in the sequence Matt Rieckman (mjr162006(AT)yahoo.com), Feb 05 2010
More terms from Rick L. Shepherd, Jan 26 2014

A300074 Decimal expansion of 1/(2*sin(Pi/5)) = A121570/2.

Original entry on oeis.org

8, 5, 0, 6, 5, 0, 8, 0, 8, 3, 5, 2, 0, 3, 9, 9, 3, 2, 1, 8, 1, 5, 4, 0, 4, 9, 7, 0, 6, 3, 0, 1, 1, 0, 7, 2, 2, 4, 0, 4, 0, 1, 4, 0, 3, 7, 6, 4, 8, 1, 6, 8, 8, 1, 8, 3, 6, 7, 4, 0, 2, 4, 2, 3, 7, 7, 8, 8, 4, 0, 4, 7, 3, 6, 3, 9, 5, 8, 9, 6, 6, 6, 9, 4, 3, 2, 0, 3, 6, 4, 2, 7, 8, 5, 1, 7, 6
Offset: 0

Views

Author

Wolfdieter Lang, Mar 01 2018

Keywords

Comments

This is the reciprocal of A182007, and one half of A121570.
This is the ratio of the radius r of the circumscribing circle of a regular pentagon and its side length s: r/s = 1/(2*sin(Pi/5)).
A quartic number of denominator 5 and minimal polynomial 5x^4 - 5x^2 + 1. - Charles R Greathouse IV, Mar 04 2018
Appears at Schur decomposition of A=[1 2; 2 3]. - Donghwi Park, Jun 20 2018

Examples

			r/s = 0.850650808352039932181540497063011072240401403764816881836740242377...
2*r/s = A121570.
		

Crossrefs

Programs

Formula

r/s = 1/A182007 = A121570/2 = (2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = (1 + sqrt(5))/2 = A001622.
From Amiram Eldar, Feb 08 2022: (Start)
Equals cos(arccot(phi)) = cos(arctan(1/phi)) = cos(A195693).
Equals sin(arctan(phi)) = sin(arccot(1/phi)) = sin(A195723). (End)
Equals Product_{k>=1} (1 + (-1)^k/A090773(k)). - Amiram Eldar, Nov 23 2024

A188593 Decimal expansion of (diagonal)/(shortest side) of a golden rectangle.

Original entry on oeis.org

1, 9, 0, 2, 1, 1, 3, 0, 3, 2, 5, 9, 0, 3, 0, 7, 1, 4, 4, 2, 3, 2, 8, 7, 8, 6, 6, 6, 7, 5, 8, 7, 6, 4, 2, 8, 6, 8, 1, 1, 3, 9, 7, 2, 6, 8, 2, 5, 1, 5, 0, 0, 4, 4, 4, 8, 9, 4, 6, 1, 1, 2, 8, 8, 8, 6, 0, 3, 0, 6, 3, 4, 0, 1, 7, 0, 3, 8, 7, 0, 0, 3, 4, 3, 7, 5, 8, 5, 6, 2, 1, 9, 4, 1, 6, 2, 2, 7, 6, 3, 3, 5, 1, 7, 9, 9, 4, 3, 5, 1, 0, 2, 8, 0, 6, 0, 0, 8, 4, 1, 7, 9, 7, 4, 1, 3, 2, 3, 8, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2011

Keywords

Comments

A rectangle of length L and width W is a golden rectangle if L/W = r = (1+sqrt(5))/2. The diagonal has length D = sqrt(L^2+W^2), so D/W = sqrt(r^2+1) = sqrt(r+2).
Largest root of x^4 - 5x^2 + 5. - Charles R Greathouse IV, May 07 2011
This is the case n=10 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n). - Bruno Berselli, Dec 13 2012
Edge length of a pentagram (regular star pentagon) with unit circumradius. - Stanislav Sykora, May 07 2014
The ratio diagonal/side of the shortest diagonal in a regular 10-gon. - Mohammed Yaseen, Nov 04 2020

Examples

			1.902113032590307144232878666758764286811397268251...
		

Crossrefs

Cf. A001622 (decimal expansion of the golden ratio), A019881.
Cf. A188594 (D/W for the silver rectangle, r=1+sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Sqrt((5+Sqrt(5))/2); // G. C. Greubel, Nov 02 2018
  • Mathematica
    r = (1 + 5^(1/2))/2; RealDigits[(2 + r)^(1/2), 10, 130][[1]]
    RealDigits[Sqrt[GoldenRatio+2],10,130][[1]] (* Harvey P. Dale, Oct 27 2023 *)
  • PARI
    sqrt((5+sqrt(5))/2)
    

Formula

Equals 2*A019881. - Mohammed Yaseen, Nov 04 2020
Equals csc(A195693) = sec(A195723). - Amiram Eldar, May 28 2021
Equals i^(1/5) + i^(-1/5). - Gary W. Adamson, Jul 08 2022
Equals sqrt(2 + phi) = sqrt(A296184), with phi = A001622. - Wolfdieter Lang, Aug 28 2022
Equals Product_{k>=0} ((10*k + 2)*(10*k + 8))/((10*k + 1)*(10*k + 9)). - Antonio GraciĆ” Llorente, Feb 24 2024
Equals Product_{k>=1} (1 - (-1)^k/A090771(k)). - Amiram Eldar, Nov 23 2024

A195693 Decimal expansion of arctan(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

5, 5, 3, 5, 7, 4, 3, 5, 8, 8, 9, 7, 0, 4, 5, 2, 5, 1, 5, 0, 8, 5, 3, 2, 7, 3, 0, 0, 8, 9, 2, 6, 8, 5, 2, 0, 0, 3, 5, 0, 2, 3, 8, 2, 2, 7, 0, 0, 7, 1, 6, 3, 2, 3, 3, 3, 8, 2, 6, 9, 6, 0, 3, 7, 1, 6, 8, 5, 5, 1, 6, 9, 4, 8, 8, 6, 8, 1, 3, 9, 7, 0, 0, 6, 7, 0, 8, 5, 6, 4, 3, 4, 3, 0, 8, 5, 3, 2, 0, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Radian measure of half the smaller angle in the golden rhombus. - Eric W. Weisstein, Dec 11 2018
The angle between the diagonal and the longer side of a golden rectangle. - Amiram Eldar, May 18 2021

Examples

			arctan(1/phi) = 0.5535743588970452515085327300892685200... .
tan(0.5535743588970452515085327300...) = 1/(golden ratio).
cot(0.5535743588970452515085327300...) = (golden ratio).
		

Crossrefs

Programs

  • Mathematica
    (See also A195692.)
    RealDigits[ArcCot[GoldenRatio], 10, 100][[1]] (* or *) RealDigits[(Pi - ArcTan[4/3])/4, 10, 100][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
  • PARI
    atan(2)/2 \\ Michel Marcus, Feb 05 2022

Formula

Equals Pi/2 - A195723. - Amiram Eldar, May 18 2021
Equals arctan(2)/2. - Christoph B. Kassir, Dec 04 2021
From Amiram Eldar, Jan 11 2022: (Start)
Equals arccot(phi).
Equals (Pi - arctan(phi^5))/3.
Equals (Pi - arctan(4/3))/4.
Equals Sum_{k>=1} ((-1)^(k+1) * arctan(1/Fibonacci(2*k))) (Bruckman, 1999). (End)
Equals Sum_{k>=1} arctan(1/Lucas(2*k)) (Hoggatt and Bruggles, 1964). - Amiram Eldar, Feb 05 2022

A243445 Decimal expansion of the polar angle of the cone circumscribed to a regular dodecahedron from one of its vertices.

Original entry on oeis.org

1, 2, 0, 5, 9, 3, 2, 4, 9, 8, 6, 8, 1, 4, 1, 3, 4, 3, 7, 5, 0, 3, 9, 2, 3, 3, 6, 1, 7, 3, 3, 0, 9, 1, 0, 9, 4, 4, 0, 0, 3, 3, 1, 7, 4, 2, 6, 6, 3, 6, 9, 6, 0, 6, 5, 1, 3, 2, 9, 9, 7, 5, 5, 0, 4, 2, 2, 9, 9, 8, 7, 5, 3, 3, 0, 9, 7, 2, 0, 9, 2, 9, 9, 1, 6, 2, 7
Offset: 1

Views

Author

Stanislav Sykora, Jun 06 2014

Keywords

Comments

The angle is in radians.

Examples

			1.20593249868141343750392336173309109440033174266369606513299755...
		

Crossrefs

Cf. A001622 (phi), A003881 (octahedron), A195695 (tetrahedron), A195696 (cube), A195723 (isosahedron).

Programs

  • Mathematica
    RealDigits[ArcCos[1/(GoldenRatio Sqrt[3])],10,120][[1]] (* Harvey P. Dale, May 17 2016 *)
  • PARI
    acos(2/(1+sqrt(5))/sqrt(3))

Formula

arccos(1/(phi*sqrt(3))), where phi = A001622.
arctan(phi^2), where phi = A001622. - Jon Maiga, Nov 11 2018
Showing 1-5 of 5 results.