cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195693 Decimal expansion of arctan(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

5, 5, 3, 5, 7, 4, 3, 5, 8, 8, 9, 7, 0, 4, 5, 2, 5, 1, 5, 0, 8, 5, 3, 2, 7, 3, 0, 0, 8, 9, 2, 6, 8, 5, 2, 0, 0, 3, 5, 0, 2, 3, 8, 2, 2, 7, 0, 0, 7, 1, 6, 3, 2, 3, 3, 3, 8, 2, 6, 9, 6, 0, 3, 7, 1, 6, 8, 5, 5, 1, 6, 9, 4, 8, 8, 6, 8, 1, 3, 9, 7, 0, 0, 6, 7, 0, 8, 5, 6, 4, 3, 4, 3, 0, 8, 5, 3, 2, 0, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Radian measure of half the smaller angle in the golden rhombus. - Eric W. Weisstein, Dec 11 2018
The angle between the diagonal and the longer side of a golden rectangle. - Amiram Eldar, May 18 2021

Examples

			arctan(1/phi) = 0.5535743588970452515085327300892685200... .
tan(0.5535743588970452515085327300...) = 1/(golden ratio).
cot(0.5535743588970452515085327300...) = (golden ratio).
		

Crossrefs

Programs

  • Mathematica
    (See also A195692.)
    RealDigits[ArcCot[GoldenRatio], 10, 100][[1]] (* or *) RealDigits[(Pi - ArcTan[4/3])/4, 10, 100][[1]] (* Eric W. Weisstein, Dec 11 2018 *)
  • PARI
    atan(2)/2 \\ Michel Marcus, Feb 05 2022

Formula

Equals Pi/2 - A195723. - Amiram Eldar, May 18 2021
Equals arctan(2)/2. - Christoph B. Kassir, Dec 04 2021
From Amiram Eldar, Jan 11 2022: (Start)
Equals arccot(phi).
Equals (Pi - arctan(phi^5))/3.
Equals (Pi - arctan(4/3))/4.
Equals Sum_{k>=1} ((-1)^(k+1) * arctan(1/Fibonacci(2*k))) (Bruckman, 1999). (End)
Equals Sum_{k>=1} arctan(1/Lucas(2*k)) (Hoggatt and Bruggles, 1964). - Amiram Eldar, Feb 05 2022

A195692 Decimal expansion of arccos(1/phi), where phi = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

9, 0, 4, 5, 5, 6, 8, 9, 4, 3, 0, 2, 3, 8, 1, 3, 6, 4, 1, 2, 7, 3, 1, 6, 7, 9, 5, 6, 6, 1, 9, 5, 8, 7, 2, 1, 4, 3, 1, 0, 9, 4, 5, 6, 0, 9, 6, 1, 6, 0, 5, 0, 6, 7, 6, 5, 5, 9, 9, 8, 4, 5, 3, 3, 4, 9, 9, 2, 9, 2, 1, 3, 7, 6, 4, 0, 4, 5, 2, 1, 7, 6, 0, 6, 1, 1, 0, 5, 8, 1, 5, 0, 1, 4, 7, 7, 3, 9, 8, 7, 3, 1, 2, 9, 7
Offset: 0

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Every cyclic quadrilateral all of whose angles are greater than arccos((sqrt(5)-1)/2) admits a 3 × 1 grid dissection into three cyclic quadrilaterals [Thm. 2.3 in Choi et al. p. 2]. - Michel Marcus, Aug 13 2019
The base angle of the isosceles triangle of smallest perimeter which circumscribes a semicircle (DeTemple, 1992). - Amiram Eldar, Jan 22 2022
Smallest positive root of the equation sin(x) = cot(x). - Wolfe Padawer, Apr 11 2023

Examples

			arccos(1/phi) = 0.904556894302381364127316795661958721...
cos(0.904556894302381364127316795661958721...) = 1/(golden ratio) = 0.618...
sec(0.904556894302381364127316795661958721...) = (golden ratio) = 1.618...
		

Crossrefs

Programs

  • Mathematica
    r = 1/GoldenRatio;
    N[ArcCos[r], 100]
    RealDigits[%]
  • PARI
    acos(2/(sqrt(5)+1)) \\ Charles R Greathouse IV, Nov 21 2024

Formula

From Amiram Eldar, Feb 07 2022: (Start)
Equals Pi/2 - A175288.
Equals arcsin(1/sqrt(phi)).
Equals arctan(sqrt(phi)). (End)

Extensions

Terms replaced with intended terms by Rick L. Shepherd, Jan 30 2013

A195694 Decimal expansion of arccos(-1/r), where r = (1+sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

2, 2, 3, 7, 0, 3, 5, 7, 5, 9, 2, 8, 7, 4, 1, 1, 8, 7, 4, 3, 3, 5, 3, 2, 6, 5, 8, 7, 6, 1, 7, 5, 4, 4, 1, 6, 2, 7, 6, 6, 0, 7, 4, 8, 3, 8, 4, 1, 3, 5, 0, 0, 7, 5, 3, 3, 1, 8, 9, 4, 6, 1, 3, 8, 9, 5, 7, 8, 8, 7, 1, 9, 2, 5, 2, 2, 1, 6, 3, 7, 8, 1, 0, 2, 1, 9, 2, 4, 2, 4, 3, 8, 4, 0, 6, 3, 9, 6, 6, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

Let c1 and c2 be the constants at A195692 and A195694; then c1+c2 = Pi.

Examples

			arccos(-1/r) = 2.2370357592874118743353265876175441...
		

Crossrefs

Programs

A352151 Expansion of e.g.f. 1/(cos(x) - tan(x)).

Original entry on oeis.org

1, 1, 3, 14, 81, 616, 5523, 58064, 697281, 9417856, 141368643, 2334020864, 42039523281, 820296426496, 17237259945363, 388087200241664, 9320064293358081, 237814050877505536, 6425096888209255683, 183232685725482942464, 5500505587921088841681
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20; Range[0, m]! * CoefficientList[Series[1/(Cos[x] - Tan[x]), {x, 0, m}], x] (* Amiram Eldar, Mar 06 2022 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(cos(x)-tan(x))))
    
  • PARI
    c(n) = ((-4)^n-(-16)^n)*bernfrac(2*n)/(2*n);
    b(n) = if(n%2==1, c((n+1)/2), (-1)^(n/2+1));
    a(n) = if(n==0, 1, sum(k=1, n, b(k)*binomial(n, k)*a(n-k)));

Formula

a(0) = 1; a(n) = Sum_{k=1..n} b(k) * binomial(n,k) * a(n-k), where b(k) = A000182((k+1)/2) if k is odd, otherwise (-1)^(k/2+1).
From Vaclav Kotesovec, Mar 06 2022: (Start)
a(n) ~ n! / (sqrt(5) * (arctan(sqrt((sqrt(5) - 1)/2)))^(n+1)).
a(n) ~ n! / (sqrt(5) * A175288^(n+1)). (End)
Showing 1-4 of 4 results.