cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195699 Decimal expansion of arcsin(sqrt(1/8)) and of arccos(sqrt(7/8)).

Original entry on oeis.org

3, 6, 1, 3, 6, 7, 1, 2, 3, 9, 0, 6, 7, 0, 7, 8, 0, 5, 5, 8, 9, 1, 8, 8, 6, 7, 6, 3, 2, 0, 6, 6, 6, 6, 8, 1, 0, 1, 2, 6, 0, 9, 2, 4, 3, 2, 1, 2, 2, 2, 0, 1, 3, 3, 8, 1, 3, 3, 7, 7, 0, 6, 6, 2, 9, 1, 8, 5, 3, 6, 9, 0, 9, 5, 7, 3, 1, 5, 1, 3, 2, 4, 8, 2, 4, 1, 3, 8, 0, 5, 4, 6, 9, 5, 5, 0, 6, 5, 1, 8
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arcsin(sqrt(1/8)) = 0.3613671239067078055891886763206666...
		

Crossrefs

Programs

  • Magma
    [Arcsin(Sqrt(1/8))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[1/8];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A195699 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A168229 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A188615 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A195704 *)
  • PARI
    asin(sqrt(1/8)) \\ G. C. Greubel, Nov 18 2017
    

Formula

From Peter Bala, Jan 14 2022: (Start)
Equals (1/2)*arccos(3/4) = arctan(sqrt(7)/7).
Equals sqrt(7)*Sum_{n >= 0} 1/((16*n + 8)*(2^n)*binomial(2*n,n)).
Equals sqrt(2)*Sum_{n >= 0} binomial(2*n,n)/((8*n + 4)*32^n). (End)