cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195702 Decimal expansion of arccos(-sqrt(2/3)).

Original entry on oeis.org

2, 5, 2, 6, 1, 1, 2, 9, 4, 4, 9, 1, 9, 4, 0, 5, 8, 9, 7, 3, 9, 5, 1, 7, 8, 7, 9, 4, 1, 5, 5, 5, 0, 9, 1, 9, 6, 3, 4, 1, 9, 9, 9, 3, 9, 4, 6, 9, 7, 5, 5, 8, 4, 0, 1, 4, 4, 7, 1, 7, 0, 4, 2, 5, 4, 7, 5, 8, 2, 0, 2, 4, 9, 0, 4, 7, 0, 8, 0, 9, 5, 4, 7, 0, 1, 4, 0, 9, 0, 1, 5, 2, 5, 6, 6, 8, 6, 6, 0, 7
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arccos(-sqrt(2/3)) = 2.5261129449405...
		

Crossrefs

Cf. A195701.

Programs

  • Magma
    [Arccos(-Sqrt(2/3))]; // G. C. Greubel, Nov 18 2017
  • Mathematica
    r = Sqrt[2/3];
    N[ArcSin[r], 100]
    RealDigits[%]  (* A195696 *)
    N[ArcCos[r], 100]
    RealDigits[%]  (* A195695 *)
    N[ArcTan[r], 100]
    RealDigits[%]  (* A195701 *)
    N[ArcCos[-r], 100]
    RealDigits[%]  (* A195702 *)
    RealDigits[ArcCos[-Sqrt[(2/3)]],10,120][[1]] (* Harvey P. Dale, Jan 15 2013 *)
  • PARI
    acos(-sqrt(2/3)) \\ G. C. Greubel, Nov 18 2017
    

Formula

Equals Pi - arcsin(sqrt(1/3)) = Pi - arctan(sqrt(1/2)). - Amiram Eldar, Jul 10 2023