cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A195721 Decimal expansion of arctan(sqrt(1/6)).

Original entry on oeis.org

3, 8, 7, 5, 9, 6, 6, 8, 6, 6, 5, 5, 1, 8, 0, 6, 5, 3, 6, 0, 2, 0, 4, 6, 8, 5, 5, 5, 9, 1, 2, 3, 6, 7, 1, 2, 8, 9, 9, 9, 0, 8, 7, 1, 7, 0, 1, 1, 5, 0, 1, 2, 5, 7, 9, 6, 4, 0, 8, 2, 2, 3, 0, 7, 8, 8, 0, 5, 8, 8, 3, 8, 7, 5, 1, 0, 3, 9, 3, 9, 9, 6, 4, 9, 9, 0, 3, 2, 7, 9, 8, 9, 2, 7, 6, 4, 6, 0, 4, 4, 9, 8, 9, 5, 6
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arctan(sqrt(1/6)) = 0.387596686655180...
		

Crossrefs

Cf. A195720.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arctan(Sqrt(1/6)); // G. C. Greubel, Aug 20 2018
  • Mathematica
    RealDigits[ArcTan[Sqrt[1/6]],10,120][[1]] (* Harvey P. Dale, Nov 09 2011 *)
  • PARI
    atan(sqrt(1/6)) \\ G. C. Greubel, Aug 20 2018
    

Formula

Equals arcsin(sqrt(1/7)) = arccos(sqrt(6/7)). - Amiram Eldar, Jul 06 2023

Extensions

Corrected by Harvey P. Dale, Nov 09 2011

A195722 Decimal expansion of arccos(-sqrt(1/6)).

Original entry on oeis.org

1, 9, 9, 1, 3, 3, 0, 6, 6, 2, 0, 7, 8, 8, 6, 1, 7, 4, 7, 1, 1, 9, 5, 8, 4, 2, 0, 7, 5, 5, 2, 9, 6, 6, 8, 1, 5, 4, 4, 9, 6, 2, 4, 0, 9, 2, 5, 0, 7, 4, 7, 2, 5, 2, 0, 3, 7, 6, 7, 3, 3, 6, 9, 8, 4, 9, 9, 9, 5, 2, 8, 5, 4, 8, 8, 1, 2, 7, 3, 1, 7, 9, 5, 7, 3, 2, 8, 4, 4, 1, 5, 0, 9, 6, 8, 5, 1, 0, 5, 0, 8, 8, 2, 5, 6, 3, 3, 8, 5, 8, 7, 4, 6, 5, 6, 4, 1, 1, 3, 4, 8, 7, 5, 8, 7, 0, 0, 5, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arccos(-sqrt(1/6)) = 1.99133066207...
		

Crossrefs

Cf. A195720.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arccos(-Sqrt(1/6)); // G. C. Greubel, Aug 20 2018
  • Mathematica
    RealDigits[ArcCos[-Sqrt[(1/6)]],10,120][[1]] (* Harvey P. Dale, May 30 2014 *)
  • PARI
    acos(-sqrt(1/6)) \\ G. C. Greubel, Aug 20 2018
    

Formula

Equals Pi - arcsin(sqrt(5/6)) = Pi - arctan(sqrt(5)). - Amiram Eldar, Jul 06 2023

Extensions

Corrected and extended by Harvey P. Dale, May 30 2014

A195725 Decimal expansion of arctan(sqrt(5/6)).

Original entry on oeis.org

7, 3, 9, 8, 8, 0, 7, 7, 4, 3, 7, 8, 7, 4, 0, 7, 6, 6, 8, 7, 3, 1, 8, 1, 0, 8, 3, 4, 3, 4, 8, 2, 0, 3, 7, 4, 1, 0, 2, 4, 0, 2, 5, 9, 5, 6, 5, 9, 6, 4, 5, 2, 1, 4, 0, 9, 0, 9, 6, 6, 7, 3, 1, 1, 6, 7, 2, 0, 9, 1, 3, 4, 4, 1, 4, 5, 7, 5, 7, 2, 8, 6, 3, 8, 2, 7, 4, 2, 9, 0, 4, 0, 8, 9, 0, 4, 6, 3, 6, 8
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Examples

			arctan(sqrt(5/6)) = 0.7398807743787407668731810834348...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Arctan(Sqrt(5/6)); // G. C. Greubel, Aug 20 2018
  • Mathematica
    r = Sqrt[5/6];
    N[ArcSin[r], 100]
    RealDigits[%] (* A195720 *)
    N[ArcCos[r], 100]
    RealDigits[%] (* A195719 *)
    N[ArcTan[r], 100]
    RealDigits[%] (* A195725 *)
    N[ArcCos[-r], 100]
    RealDigits[%] (* A195726 *)
  • PARI
    atan(sqrt(5/6)) \\ G. C. Greubel, Aug 20 2018
    

Formula

Equals arcsin(sqrt(5/11)) = arccos(sqrt(6/11)). - Amiram Eldar, Jul 06 2023
Showing 1-3 of 3 results.