cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195806 Number of triangular of a 5 X 5 X 5 0..n arrays with all rows and diagonals having the same length having the same sum, with corners zero.

Original entry on oeis.org

16, 105, 496, 1759, 5052, 12469, 27412, 55059, 102952, 181543, 304908, 491563, 765184, 1155567, 1699684, 2442553, 3438468, 4752283, 6460432, 8652429, 11432392, 14920189, 19253232, 24588229, 31102456, 38995845, 48492976, 59844451, 73329300
Offset: 1

Views

Author

R. H. Hardin, Sep 23 2011

Keywords

Examples

			Some solutions for n=4:
      0          0          0          0          0          0          0
     0 1        2 2        1 1        1 4        4 2        4 1        0 0
    2 0 2      1 0 4      0 3 0      4 2 0      2 4 2      1 0 4      3 2 3
   1 0 0 0    3 3 0 0    1 3 3 1    2 0 4 3    2 4 4 4    2 3 0 2    0 2 2 0
  0 0 2 1 0  0 1 1 4 0  0 1 0 1 0  0 3 2 2 0  0 4 2 2 0  0 3 1 3 0  0 0 3 0 0
		

Crossrefs

Row 5 of A195805.

Formula

From Manuel Kauers and Christoph Koutschan, Mar 01 2023: (Start)
Conjectured recurrence: a(n) - 3*a(n+1) + 2*a(n+2) - a(n+3) + 6*a(n+4) - 5*a(n+5) - 3*a(n+6) + 3*a(n+8) + 5*a(n+9) - 6*a(n+10) + a(n+11) - 2*a(n+12) + 3*a(n+13) - a(n+14) = 0.
Conjectured closed form as a quasi-polynomial:
a(6*n) = 1 + 25*n + 158*n^2 + 650*n^3 + 2275*n^4 + 4680*n^5 + 4680*n^6.
a(6*n+1) = 16 + 198*n + 1133*n^2 + 3900*n^3 + 8125*n^4 + 9360*n^5 + 4680*n^6.
a(6*n+2) = 105 + 1087*n + 4922*n^2 + 12350*n^3 + 17875*n^4 + 14040*n^5 + 4680*n^6.
a(6*n+3) = 496 + 4148*n + 14783*n^2 + 28600*n^3 + 31525*n^4 + 18720*n^5 + 4680*n^6.
a(6*n+4) = 1759 + 12121*n + 35258*n^2 + 55250*n^3 + 49075*n^4 + 23400*n^5 + 4680*n^6.
a(6*n+5) = (1+n)^2*(5052 + 19370*n + 28405*n^2 + 18720*n^3 + 4680*n^4). (End)