cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195816 Edge lengths of Euler bricks.

Original entry on oeis.org

44, 85, 88, 117, 132, 140, 160, 170, 176, 187, 195, 220, 231, 234, 240, 252, 255, 264, 275, 280, 308, 320, 340, 351, 352, 374, 390, 396, 420, 425, 429, 440, 462, 468, 480, 484, 495, 504, 510, 528, 550, 560, 561, 572, 585, 595, 616, 640, 660, 680, 693, 700
Offset: 1

Views

Author

Keywords

Comments

Euler bricks are cuboids all of whose edges and face-diagonals are integers.

Examples

			For n=1, the edges (a,b,c) are (240,117,44) and the diagonals (d(a,b),d(a,c),d(b,c)) are (267,244,125).
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 2, Diophantine Analysis, Dover, New York, 2005.
  • P. Halcke, Deliciae Mathematicae; oder, Mathematisches sinnen-confect., N. Sauer, Hamburg, Germany, 1719, page 265.

Crossrefs

Programs

  • Mathematica
    ok[a_] := Catch[Block[{b, c, s}, s = Reduce[a^2 + b^2 == c^2 && b > 0 && c > 0, {b, c}, Integers]; If[s === False, Throw@ False, s = b /. List@ ToRules@ s]; Do[If[ IntegerQ@ Sqrt[s[[i]]^2 + s[[j]]^2], Throw@ True], {i, 2, Length@s}, {j, i - 1}]]; False]; Select[ Range[700], ok] (* Giovanni Resta, Nov 22 2018 *)

Formula

Integer edges a>b>c such that integer face-diagonals are d(a,b)=sqrt(a^2+b^2), d(a,c)=sqrt(a^2,c^2), d(b,c)=sqrt(b^2,c^2)