cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Christopher Monckton of Brenchley

Christopher Monckton of Brenchley's wiki page.

Christopher Monckton of Brenchley has authored 3 sequences.

A197040 Occurrences of edge-lengths of Euler bricks in every 100 consecutive integers.

Original entry on oeis.org

3, 8, 9, 8, 9, 9, 6, 9, 10, 8, 7, 9, 6, 8, 7, 8, 11, 6, 7, 8, 9, 8, 7, 6, 8, 10, 6, 6, 6, 8, 8, 8, 8, 9, 6, 9, 7, 6, 7, 8, 8, 9, 7, 11, 7, 8, 5, 9, 8, 9, 9, 7, 6, 7, 9, 6, 7, 9, 7, 8, 10, 5, 9, 7, 7, 7, 7, 6, 9, 9, 6, 8, 7, 9, 8, 6, 9, 5, 9, 9, 8, 6, 6, 7, 7
Offset: 1

Author

Keywords

Comments

Distribution of edge-length occurrences for Euler bricks is remarkably near-uniform.

Examples

			For n=1 (i.e., the integers 1..100), there are only 3 possible edge-lengths for Euler bricks: 44, 85, 88.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 2, Diophantine Analysis, Dover, New York, 2005.
  • P. Halcke, Deliciae Mathematicae; oder, Mathematisches sinnen-confect., N. Sauer, Hamburg, Germany, 1719, page 265.

Crossrefs

cf. A195816, A196943, A031173, A031174, A031175. Edge lengths of Euler bricks are A195816; face diagonals are A196943.

Programs

  • Sage
    def a(n):
        ans = set()
        for x in range(100*(n-1)+1, 100*n+1):
            divs = Integer(x^2).divisors()
            for d in divs:
                if (d <= x^2/d): continue
                if (d-x^2/d)%2==0:
                    y = (d-x^2/d)/2
                    for e in divs:
                        if (e <= x^2/e): continue
                        if (e-x^2/e)%2==0:
                            z = (e-x^2/e)/2
                            if (y^2+z^2).is_square(): ans.add(x)
        return len(ans)  # Robin Visser, Jan 02 2024

A196943 Face-diagonal lengths of Euler bricks.

Original entry on oeis.org

125, 157, 244, 250, 267, 281, 314, 348, 365, 373, 375, 471, 488, 500, 534, 562, 625, 628, 696, 707, 725, 730, 732, 746, 750, 773, 785, 801, 808, 825, 843, 875, 942, 976, 979, 1000, 1037, 1044, 1068, 1095, 1099, 1119, 1124, 1125, 1193, 1220, 1250, 1256, 1335
Offset: 1

Author

Keywords

Comments

Euler bricks are cuboids all of whose edges and face-diagonals are integers.
It is not known whether any Euler brick with space-diagonals that are integers exists.
825 is the only integer common to the sets of edge lengths and of face-diagonal lengths <= 1000 for Euler bricks.

Examples

			For n=1, the edges (a,b,c) are (240,117,44) and the face-diagonals (d(a,b),d(a,c),d(b,c)) are (267,244,125).
Note the pleasing factorizations of the edge-lengths of this least Euler brick: 240 = 15*4^2; 117 = 13*3^2; 44 = 11*2^2.
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 2, Diophantine Analysis, Dover, New York, 2005.
  • P. Halcke, Deliciae Mathematicae; oder, Mathematisches sinnen-confect., N. Sauer, Hamburg, Germany, 1719, page 265.

Crossrefs

cf. A195816, A031173, A031174, A031175. Edge lengths of Euler bricks are A195816.

Formula

Integer edges a > b > c such that integer face-diagonals are d(a,b) = sqrt(a^2 + b^2), d(a,c) = sqrt(a^2 + c^2), d(b,c) = sqrt(b^2 + c^2).

A195816 Edge lengths of Euler bricks.

Original entry on oeis.org

44, 85, 88, 117, 132, 140, 160, 170, 176, 187, 195, 220, 231, 234, 240, 252, 255, 264, 275, 280, 308, 320, 340, 351, 352, 374, 390, 396, 420, 425, 429, 440, 462, 468, 480, 484, 495, 504, 510, 528, 550, 560, 561, 572, 585, 595, 616, 640, 660, 680, 693, 700
Offset: 1

Author

Keywords

Comments

Euler bricks are cuboids all of whose edges and face-diagonals are integers.

Examples

			For n=1, the edges (a,b,c) are (240,117,44) and the diagonals (d(a,b),d(a,c),d(b,c)) are (267,244,125).
		

References

  • L. E. Dickson, History of the Theory of Numbers, vol. 2, Diophantine Analysis, Dover, New York, 2005.
  • P. Halcke, Deliciae Mathematicae; oder, Mathematisches sinnen-confect., N. Sauer, Hamburg, Germany, 1719, page 265.

Crossrefs

Programs

  • Mathematica
    ok[a_] := Catch[Block[{b, c, s}, s = Reduce[a^2 + b^2 == c^2 && b > 0 && c > 0, {b, c}, Integers]; If[s === False, Throw@ False, s = b /. List@ ToRules@ s]; Do[If[ IntegerQ@ Sqrt[s[[i]]^2 + s[[j]]^2], Throw@ True], {i, 2, Length@s}, {j, i - 1}]]; False]; Select[ Range[700], ok] (* Giovanni Resta, Nov 22 2018 *)

Formula

Integer edges a>b>c such that integer face-diagonals are d(a,b)=sqrt(a^2+b^2), d(a,c)=sqrt(a^2,c^2), d(b,c)=sqrt(b^2,c^2)