A196943 Face-diagonal lengths of Euler bricks.
125, 157, 244, 250, 267, 281, 314, 348, 365, 373, 375, 471, 488, 500, 534, 562, 625, 628, 696, 707, 725, 730, 732, 746, 750, 773, 785, 801, 808, 825, 843, 875, 942, 976, 979, 1000, 1037, 1044, 1068, 1095, 1099, 1119, 1124, 1125, 1193, 1220, 1250, 1256, 1335
Offset: 1
Keywords
Examples
For n=1, the edges (a,b,c) are (240,117,44) and the face-diagonals (d(a,b),d(a,c),d(b,c)) are (267,244,125). Note the pleasing factorizations of the edge-lengths of this least Euler brick: 240 = 15*4^2; 117 = 13*3^2; 44 = 11*2^2.
References
- L. E. Dickson, History of the Theory of Numbers, vol. 2, Diophantine Analysis, Dover, New York, 2005.
- P. Halcke, Deliciae Mathematicae; oder, Mathematisches sinnen-confect., N. Sauer, Hamburg, Germany, 1719, page 265.
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
- E. W. Weisstein, MathWorld: Euler brick
Formula
Integer edges a > b > c such that integer face-diagonals are d(a,b) = sqrt(a^2 + b^2), d(a,c) = sqrt(a^2 + c^2), d(b,c) = sqrt(b^2 + c^2).
Comments