A196039 Total sum of the smallest part of every partition of every shell of n.
0, 1, 4, 9, 18, 30, 50, 75, 113, 162, 231, 318, 441, 593, 798, 1058, 1399, 1824, 2379, 3066, 3948, 5042, 6422, 8124, 10264, 12884, 16138, 20120, 25027, 30994, 38312, 47168, 57955, 70974, 86733, 105676, 128516, 155850, 188644, 227783, 274541
Offset: 0
Keywords
Examples
For n = 5 the seven partitions of 5 are: 5 3 + 2 4 + 1 2 + 2 + 1 3 + 1 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 . The five shells of 5 (see A135010 and also A138121), written as a triangle, are: 1 2, 1 3, 1, 1 4, (2, 2), 1, 1, 1 5, (3, 2), 1, 1, 1, 1, 1 . The first "2" of row 4 does not count, also the "3" of row 5 does not count, so we have: 1 2, 1 3, 1, 1 4, 2, 1, 1, 1 5, 2, 1, 1, 1, 1, 1 . thus a(5) = 1+2+1+3+1+1+4+2+1+1+1+5+2+1+1+1+1+1 = 30.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
- Omar E. Pol, Illustration of the seven regions of 5
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(nAlois P. Heinz, Apr 03 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n == i, n, 0] + If[i < 1, 0, b[n, i-1] + If[n < i, 0, b[n-i, i]]]; Accumulate[Table[b[n, n], {n, 0, 50}]] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*Pi*sqrt(2*n)). - Vaclav Kotesovec, Jul 06 2019
Comments