A196052 Sum of the degrees of the nodes at level 1 in the rooted tree with Matula-Goebel number n.
0, 1, 2, 2, 2, 3, 3, 3, 4, 3, 2, 4, 3, 4, 4, 4, 2, 5, 4, 4, 5, 3, 3, 5, 4, 4, 6, 5, 3, 5, 2, 5, 4, 3, 5, 6, 4, 5, 5, 5, 2, 6, 3, 4, 6, 4, 3, 6, 6, 5, 4, 5, 5, 7, 4, 6, 6, 4, 2, 6, 4, 3, 7, 6, 5, 5, 2, 4, 5, 6, 4, 7, 3, 5, 6, 6, 5, 6, 3, 6, 8, 3, 2, 7, 4, 4, 5, 5, 5, 7, 6, 5, 4, 4, 6, 7, 3, 7, 6, 6, 3, 5, 4, 6, 7, 6, 4, 8, 2, 5
Offset: 1
Keywords
Examples
a(7)=3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y. a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
References
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Haskell
import Data.List (genericIndex) a196052 n = genericIndex a196052_list (n - 1) a196052_list = 0 : g 2 where g x = y : g (x + 1) where y = if t > 0 then a001222 t + 1 else a196052 r + a196052 s where t = a049084 x; r = a020639 x; s = x `div` r -- Reinhard Zumkeller, Sep 03 2013
-
Maple
with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then 1+bigomega(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; a[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, 1 + PrimeOmega[PrimePi[n]], True, a[r[n]] + a[s[n]]]; Table[a[n], {n, 1, 110}] (* Jean-François Alcover, Jun 25 2024, after Maple code *)
-
PARI
a(n) = my(m=factor(n)); [bigomega(primepi(p))+1 | p<-m[,1]] * m[,2]; \\ Kevin Ryde, Oct 16 2020
Formula
a(1)=0; if n = prime(t) (the t-th prime), then a(n)=1+G(t), where G(t) is the number of prime divisors of t counted with multiplicities; if n=r*s (r,s>=2), then a(n)=a(r)+a(s). The Maple program is based on this recursive formula.
Comments