cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A131317 Incomplete version of A196104.

Original entry on oeis.org

22, 33, 55, 77, 111, 1111, 11111, 1111111, 11111111111, 11111111111111111, 2222222222222222222, 3333333333333333333, 5555555555555555555, 7777777777777777777, 22222222222222222222222, 33333333333333333333333
Offset: 1

Views

Author

Keywords

A268582 Sphenic numbers having identical digits.

Original entry on oeis.org

66, 222, 555, 777, 2222, 3333, 5555, 7777, 22222, 33333, 55555, 77777, 2222222, 3333333, 5555555, 7777777, 22222222222, 33333333333, 55555555555, 77777777777, 1111111111111, 22222222222222222, 33333333333333333, 55555555555555555, 77777777777777777, 6666666666666666666
Offset: 1

Views

Author

Michel Lagneau, Feb 07 2016

Keywords

Comments

Subsequence of A007304 (sphenic numbers: products of 3 distinct primes).
a(1)= A087331(4).

Examples

			222 is in the sequence because 222 = 2*3*37, product of 3 distinct primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 23 do:
      for b from 1 to 9 do:
        x:=(((10^n)- 1)/9)*b:y:=factorset(x):n1:=nops(y):
         if bigomega(x)=3 and n1=3
          then
          printf(`%d, `,x):
          else
         fi:
       od:
    od:
  • Mathematica
    Select[Flatten@ Map[Map[Function[k, FromDigits@ Table[k, {#}]], Range[1, 9]] &, Range@ 20], Length@ # == 3 && Times @@ Last /@ # == 1 &@ FactorInteger@ # &] (* Michael De Vlieger, Feb 07 2016 *)

A307507 Brazilian semiprimes.

Original entry on oeis.org

10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 213, 214, 215, 217, 218
Offset: 1

Views

Author

Bernard Schott, Apr 11 2019

Keywords

Comments

Comparison with A001358 (semiprimes): in this sequence, there are no squared primes apart from 121 = (11111)_3, and also 6 is missing from here since it is not Brazilian.
Different from the squarefree semiprimes of A006881: this sequence = {A006881 \ 6} Union {121}.

Examples

			a(20) = 74 = 2 * 37 = (22)_36 is semiprime and Brazilian.
25 = 5 * 5 is semiprime and no Brazilian, and 45 = (55)_8 = (33)_14 = 3^2 * 5 is Brazilian but no semiprime.
		

Crossrefs

Intersection of A001358 and A125134.
Showing 1-3 of 3 results.