cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196382 Number of sequences of n coin flips, that win on the last flip, if the sequence of flips ends with (1,1,0) or (1,0,1).

Original entry on oeis.org

0, 0, 2, 3, 4, 7, 11, 16, 24, 36, 53, 78, 115, 169, 248, 364, 534, 783, 1148, 1683, 2467, 3616, 5300, 7768, 11385, 16686, 24455, 35841, 52528, 76984, 112826, 165355, 242340, 355167, 520523, 762864, 1118032, 1638556, 2401421, 3519454, 5158011
Offset: 1

Views

Author

Paul Weisenhorn, Oct 28 2011

Keywords

Comments

If the sequence ends with (1,1,0) Abel wins; if it ends with (1,0,1) Kain wins.
Abel(n)=A077868(n-3); Kain(n)=A000930(n-3).
Win probability for Abel=sum(Abel(n)/2^n)= 2/3.
Win probability for Kain=sum(Kain(n)/2^n)= 1/3.
Mean length of the game=sum(n*a(n)/2^n)= 6.

Examples

			For n=6 the a(6)=7 solutions are (0,0,0,1,1,0),(1,0,0,1,1,0),(0,0,1,1,1,0),(0,1,1,1,1,0),(1,1,1,1,1,0) for Abel and (0,0,0,1,0,1),(1,0,0,1,0,1) for Kain.
		

References

  • A. Engel, Wahrscheinlichkeit und Statistik, Band 2, Klett, 1978, pages 25-26.

Crossrefs

Cf. A000930, A077868, A179070 (first differences).

Programs

  • Maple
    a(1):=0: a(2):=0: a(3):=2: a(4):=3: a(5):=4:
    for n from 6 to 100 do
      a(n):=a(n-1)+a(n-2)-a(n-5):
    end do:
    seq(a(n),n=1..100);
  • Mathematica
    Rest[CoefficientList[Series[x^3*(2 - x)/((1 - x)*(1 - x - x^3)), {x,0,50}], x]] (* G. C. Greubel, May 02 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(x^3*(2 - x)/((1 - x)*(1 - x - x^3)))) \\ G. C. Greubel, May 02 2017

Formula

a(n) = +2*a(n-1) -a(n-2) +a(n-3) -a(n-4), n>=5.
G.f.: x^3*(2-x)/((1-x)*(1-x-x^3)).
a(n) = 2*A077868(n-3) - A077868(n-4). - R. J. Mathar, Jan 11 2017
a(n) = a(n-1) + a(n-3) + 1, n>3. - Greg Dresden, Feb 09 2020