A196415 Values of n such that (product of first n composite numbers) / (sum of first n composite numbers) is an integer.
1, 4, 7, 10, 13, 15, 16, 21, 32, 33, 56, 57, 60, 70, 77, 80, 83, 84, 88, 92, 93, 97, 112, 114, 115, 120, 122, 130, 134, 141, 147, 153, 155, 164, 165, 188, 191, 196, 201, 202, 213, 222, 225, 226, 229, 243, 245, 248, 252, 260, 264, 265, 268, 273, 274, 281
Offset: 1
Keywords
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (elemIndices) a196415 n = a196415_list !! (n-1) a196415_list = map (+ 1) $ elemIndices 0 $ zipWith mod a036691_list a053767_list -- Reinhard Zumkeller, Oct 03 2011
-
Maple
# First define list of composite numbers: tc:=[4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27, 28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49, 50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69, 70,72,74,75,76,77,78,80,81,82,84,85,86,87,88]; a1:=n->mul(tc[i],i=1..n); a2:=n->add(tc[i],i=1..n); sn:=[]; s0:=[]; s1:=[]; s2:=[]; for n from 1 to 40 do t1:=a1(n)/a2(n); if whattype(t1) = integer then sn:= [op(sn),n]; s0:= [op(s0),t1]; s1:= [op(s1),a1(n)]; s2:= [op(s2),a2(n)]; fi; od: sn; s0; s1; s2; # alternatively for n from 1 to 1000 do if type(A036691(n)/A053767(n),'integer') then printf("%d,",n); end if; end do: # R. J. Mathar, Oct 03 2011
-
Mathematica
c = Select[Range[2,355], ! PrimeQ@# &]; p = 1; s = 0; Select[Range@ Length@c, Mod[p *= c[[#]], s += c[[#]]] == 0 &] (* Giovanni Resta, Apr 03 2013 *)
Extensions
More terms from Arkadiusz Wesolowski, Oct 03 2011
Comments