cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196415 Values of n such that (product of first n composite numbers) / (sum of first n composite numbers) is an integer.

Original entry on oeis.org

1, 4, 7, 10, 13, 15, 16, 21, 32, 33, 56, 57, 60, 70, 77, 80, 83, 84, 88, 92, 93, 97, 112, 114, 115, 120, 122, 130, 134, 141, 147, 153, 155, 164, 165, 188, 191, 196, 201, 202, 213, 222, 225, 226, 229, 243, 245, 248, 252, 260, 264, 265, 268, 273, 274, 281
Offset: 1

Views

Author

N. J. A. Sloane, Oct 02 2011

Keywords

Comments

A036691(a(n)) mod A053767(a(n)) = 0, A141092(n) = A036691(a(n)) / A053767(a(n)). [Reinhard Zumkeller, Oct 03 2011]

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a196415 n = a196415_list !! (n-1)
    a196415_list =
       map (+ 1) $ elemIndices 0 $ zipWith mod a036691_list a053767_list
    -- Reinhard Zumkeller, Oct 03 2011
  • Maple
    # First define list of composite numbers:
    tc:=[4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,
    28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,
    50,51,52,54,55,56,57,58,60,62,63,64,65,66,68,69,
    70,72,74,75,76,77,78,80,81,82,84,85,86,87,88];
    a1:=n->mul(tc[i],i=1..n);
    a2:=n->add(tc[i],i=1..n);
    sn:=[];
    s0:=[];
    s1:=[];
    s2:=[];
    for n from 1 to 40 do
      t1:=a1(n)/a2(n);
      if whattype(t1) = integer then
       sn:= [op(sn),n];
       s0:= [op(s0),t1];
       s1:= [op(s1),a1(n)];
       s2:= [op(s2),a2(n)];
    fi;
    od:
    sn; s0; s1; s2;
    # alternatively
    for n from 1 to 1000 do
            if type(A036691(n)/A053767(n),'integer') then
                    printf("%d,",n);
            end if;
    end do: # R. J. Mathar, Oct 03 2011
  • Mathematica
    c = Select[Range[2,355], ! PrimeQ@# &]; p = 1; s = 0; Select[Range@ Length@c, Mod[p *= c[[#]], s += c[[#]]] == 0 &] (* Giovanni Resta, Apr 03 2013 *)

Extensions

More terms from Arkadiusz Wesolowski, Oct 03 2011