A196438 a(n) is the number of integers k <= n such that GCQ_A(n, k) >= 2 (see definition in comments).
0, 0, 1, 1, 3, 2, 5, 5, 6, 7, 9, 7, 11, 11, 12, 13, 15, 14, 17, 16, 18, 19, 21, 19, 23, 23, 24, 25, 27, 26, 29, 29, 30, 31, 33, 31, 35, 35, 36, 36, 39, 38, 41, 41, 42, 43, 45, 43, 47, 47
Offset: 1
Keywords
Examples
For n = 6, a(6) = 2 because there are 2 cases with GCQ_A(6, k) >= 2: GCQ_A(6, 1) = 0, GCQ_A(6, 2) = 0, GCQ_A(6, 3) = 0, GCQ_A(6, 4) = 0, GCQ_A(6, 5) = 4, GCQ_A(6, 6) = 5. Also there are 2 cases with LCQ_A(6, k) >= 2: LCQ_A(6, 1) = 0, LCQ_A(6, 2) = 0, LCQ_A(6, 3) = 0, LCQ_A(6, 4) = 0, LCQ_A(6, 5) = 4, LCQ_A(6, 6) = 4.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
PARI
GCQ_A(a, b)=m = min(a, b); if(m < 3, return(0)); da = Set(divisors(a)); db = Set(divisors(b)); s = Set(vector(m-1,i,i)); s = setminus(s, da); s = setminus(s, db); if(#s==0,0,s[#s]) a(n) = sum(i=3,n,GCQ_A(i, n)>=2) \\ David A. Corneth, Aug 04 2017
-
PARI
GCQ_A(a, b)=forstep(m=min(a,b)-1,2,-1, if(a%m && b%m, return(m))); 0 a(n) = sum(i=3,n,GCQ_A(i, n)>=2) \\ Charles R Greathouse IV, Aug 26 2017
Formula
a(n) = n - A196437(n).
Comments