A196440 a(n) = the sum of numbers k <= n such that GCQ_A(n, k) >= 2 (see definition in comments).
0, 0, 3, 4, 12, 11, 25, 30, 38, 49, 63, 63, 88, 99, 113, 130, 150, 161, 187, 198, 224, 247, 273, 285, 322, 345, 371, 400, 432, 455, 493, 522, 554, 589, 627, 651, 700, 735, 773, 808, 858, 893, 943, 984, 1028, 1075, 1125, 1161, 1222, 1269, 1319, 1372, 1428, 1475, 1537, 1590, 1646, 1705, 1767, 1802, 1888, 1947, 2009, 2074, 2142, 2201, 2275
Offset: 1
Keywords
Examples
For n = 6, a(6) = 11 because there are 2 cases k (k = 5, 6) with GCQ_A(6, k) >= 2: GCQ_A(6, 1) = 0, GCQ_A(6, 2) = 0, GCQ_A(6, 3) = 0, GCQ_A(6, 4) = 0, GCQ_A(6, 5) = 4, GCQ_A(6, 6) = 5. Sum of such numbers k is 11. Also there are 2 same cases k with LCQ_A(6, k) >= 2: LCQ_A(6, 1) = 0, LCQ_A(6, 2) = 0, LCQ_A(6, 3) = 0, LCQ_A(6, 4) = 0, LCQ_A(6, 5) = 4, LCQ_A(6, 6) = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..1001
Programs
-
PARI
GCQ_A(a, b) = { forstep(m=min(a, b)-1, 2, -1, if(a%m && b%m, return(m))); 0; }; \\ From PARI-program in A196438 A196440(n) = sum(k=1,n,(2<=GCQ_A(n,k))*k); \\ Antti Karttunen, Jun 12 2018
Extensions
More terms from Antti Karttunen, Jun 12 2018
Comments