A138247
E.g.f.: Sum_{n>=0} exp( (2^n+3^n)*x ) * (2^n+3^n)^n * x^n/n!.
Original entry on oeis.org
1, 7, 223, 49849, 94705663, 1616229320497, 251286598125520183, 357716675257916544062689, 4670472774542449929397808845183, 559006854195449142958954163012808059617, 612171730457531439763516750114999086563829844663, 6118056385739077528636842573416061383741677666682643900049
Offset: 0
E.g.f.: A(x) = 1 + 7*x + 223*x^2/2! + 49849*x^3/3! + 94705663*x^4/4! + 1616229320497*x^5/5! + 251286598125520183*x^6/6! + 357716675257916544062689*x^7/7! + 4670472774542449929397808845183*x^8/8! + ...
such that
A(x) = exp(2*x) + (2+3)*exp((2+3)*x)*x + (2^2+3^2)^2*exp((2^2+3^2)*x)*x^2/2! + (2^3+3^3)^3*exp((2^3+3^3)*x)*x^3/3! + (2^4+3^4)^4*exp((2^4+3^4)*x)*x^4/4! + ...
ORDINARY GENERATING FUNCTION.
O.g.f.: B(x) = 1 + 7*x + 223*x^2 + 49849*x^3 + 94705663*x^4 + 1616229320497*x^5 + 251286598125520183*x^6 + 357716675257916544062689*x^7 + ...
such that
B(x) = 1/(1-2*x) + (2+3)*x/(1 - (2+3)*x)^2 + (2^2+3^2)^2*x^2/(1 - (2^2+3^2)*x)^3 + (2^3+3^3)^3*x^3/(1 - (2^3+3^3)*x)^4 + (2^4+3^4)^4*x^4/(1 - (2^4+3^4)*x)^5 + ...
ILLUSTRATION OF TERMS.
a(1) = 2 + 5 = 3 + 4 = 7 ;
a(2) = 2^2 + 2*5^2 + 13^2 = 5^2 + 2*7^2 + 10^2 = 223 ;
a(3) = 2^3 + 3*5^3 + 3*13^3 + 35^3 = 9^3 + 3*13^3 + 3*19^3 + 28^3 = 49849.
-
Table[Sum[Binomial[n, k]*(2^k + 3^k)^n, {k, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Jul 14 2019 *)
-
{a(n)=local(p=2,q=3,s=1,t=1,u=1,v=1);
sum(k=0,n,binomial(n,k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
/* right side of the general binomial identity: */
{a(n)=local(p=2,q=3,s=1,t=1,u=1,v=1);
sum(k=0,n,binomial(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
A196460
E.g.f.: A(x) = Sum_{n>=0} (1+2^n)^n * exp((1+2^n)*x) * x^n/n!.
Original entry on oeis.org
1, 5, 47, 1193, 113855, 46857665, 83540629607, 629692415941433, 19653639560140008575, 2505063418700072099312705, 1292764583816731772891346438887, 2687238342732260436646020885678131993, 22431974111110989403331425804893720873764255
Offset: 0
E.g.f.: A(x) = 1 + 5*x + 47*x^2/2! + 1193*x^3/3! + 113855*x^4/4! +...
where
A(x) = exp((1+1)*x) + (1+2)*exp((1+2)*x)*x + (1+2^2)^2*exp((1+2^2)*x)*x^2/2! + (1+2^3)^3*exp((1+2^3)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(2*x) + 3*exp(3*x)*x + 5^2*exp(5*x)*x^2/2! + 9^3*exp(9*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 33^5*exp(33*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (1+2) = 5 ;
a(2) = (1+1)^2 + 2*(1+2)^2 + (1+2^2)^2 = 2^2 + 2*3^2 + 5^2 = 47 ;
a(3) = (1+1)^3 + 3*(1+2)^3 + 3*(1+2^2)^3 + (1+2^3)^3 = 2^3 + 3*3^3 + 3*5^3 + 9^3 = 1193 ;
a(4) = (1+1)^4 + 4*(1+2)^4 + 6*(1+2^2)^4 + 4*(1+2^3)^4 + (1+2^4)^4 = 2^4 + 4*3^4 + 6*5^4 + 4*9^4 + 17^4 = 113855.
-
Table[Sum[Binomial[n,k]*(1+2^k)^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 25 2013 *)
-
{a(n)=local(p=1, q=2);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
-
{a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
-
/* right side of the general binomial identity: */
{a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
A196458
E.g.f.: A(x) = Sum_{n>=0} (3^n + (-1)^n)^n * exp((3^n + (-1)^n)*x) * x^n/n!.
Original entry on oeis.org
1, 4, 112, 20608, 47100160, 848654393344, 152543949079048192, 239308785705492230176768, 3442046584639832610980531077120, 443426848780270385458655031044167696384, 515552048984399455145742768443316759297510080512
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 112*x^2/2! + 20608*x^3/3! + 47100160*x^4/4! +...
where
_ A(x) = exp((1+1)*x) + (3-1)*exp((3-1)*x)*x + (3^2+1)^2*exp((3^2+1)*x)*x^2/2! + (3^3-1)^3*exp((3^3-1)*x)*x^3/3! +...
or, equivalently,
_ A(x) = exp(2*x) + 2*exp(2*x)*x + 10^2*exp(10*x)*x^2/2! + 26^3*exp(26*x)*x^3/3! + 82^4*exp(82*x)*x^4/4! + 242^5*exp(242*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (3-1) = 4 ;
a(2) = (1+1)^2 + 2*(3-1)^2 + (3^2+1)^2 = 2^2 + 2*2^2 + 10^2 = 112 ;
a(3) = (1+1)^3 + 3*(3-1)^3 + 3*(3^2+1)^3 + (3^3-1)^3 = 2^3 + 3*2^3 + 3*10^3 + 26^3 = 20608 ;
a(4) = (1+1)^4 + 4*(3-1)^4 + 6*(3^2+1)^4 + 4*(3^3-1)^4 + (3^4+1)^4 = 2^4 + 4*2^4 + 6*10^4 + 4*26^4 + 82^4 = 47100160.
-
{a(n)=sum(k=0,n,binomial(n,k)*(3^k + (-1)^k)^n)}
-
{a(n)=sum(k=0,n,binomial(n,k)*(1 + (-1)^(n-k)*3^k)^n)}
-
{a(n)=local(p=-1, q=3);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
-
{a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
-
/* right side of the general binomial identity: */
{a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
Showing 1-3 of 3 results.
Comments