A133049
Squares of Mersenne primes A000668(n).
Original entry on oeis.org
9, 49, 961, 16129, 67092481, 17179607041, 274876858369, 4611686014132420609, 5316911983139663487003542222693990401, 383123885216472214589586755549637256619304505646776321
Offset: 1
a(3)=961 because the 3rd Mersenne prime is 31 and 31^2=961.
-
Select[2^Range[1000] - 1, PrimeQ]^2 (* G. C. Greubel, Oct 03 2017 *)
-
forprime(p=2, 1000, if(ispseudoprime(2^p-1), print1((2^p-1)^2", "))) \\ G. C. Greubel, Oct 03 2017
A094617
Triangular array T of numbers generated by these rules: 2 is in T; and if x is in T, then 2x-1 and 3x-2 are in T.
Original entry on oeis.org
2, 3, 4, 5, 7, 10, 9, 13, 19, 28, 17, 25, 37, 55, 82, 33, 49, 73, 109, 163, 244, 65, 97, 145, 217, 325, 487, 730, 129, 193, 289, 433, 649, 973, 1459, 2188, 257, 385, 577, 865, 1297, 1945, 2917, 4375, 6562, 513, 769, 1153, 1729, 2593, 3889, 5833, 8749, 13123, 19684
Offset: 1
Rows of this triangle begin:
2;
3, 4;
5, 7, 10;
9, 13, 19, 28;
17, 25, 37, 55, 82;
33, 49, 73, 109, 163, 244;
65, 97, 145, 217, 325, 487, 730;
129, 193, 289, 433, 649, 973, 1459, 2188;
257, 385, 577, 865, 1297, 1945, 2917, 4375, 6562;
513, 769, 1153, 1729, 2593, 3889, 5833, 8749, 13123, 19684;
...
-
FoldList[Append[2 #1 - 1, 1 + 3^#2] &, {2}, Range[9]] // Flatten (* Ivan Neretin, Mar 30 2016 *)
A196460
E.g.f.: A(x) = Sum_{n>=0} (1+2^n)^n * exp((1+2^n)*x) * x^n/n!.
Original entry on oeis.org
1, 5, 47, 1193, 113855, 46857665, 83540629607, 629692415941433, 19653639560140008575, 2505063418700072099312705, 1292764583816731772891346438887, 2687238342732260436646020885678131993, 22431974111110989403331425804893720873764255
Offset: 0
E.g.f.: A(x) = 1 + 5*x + 47*x^2/2! + 1193*x^3/3! + 113855*x^4/4! +...
where
A(x) = exp((1+1)*x) + (1+2)*exp((1+2)*x)*x + (1+2^2)^2*exp((1+2^2)*x)*x^2/2! + (1+2^3)^3*exp((1+2^3)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(2*x) + 3*exp(3*x)*x + 5^2*exp(5*x)*x^2/2! + 9^3*exp(9*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 33^5*exp(33*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (1+2) = 5 ;
a(2) = (1+1)^2 + 2*(1+2)^2 + (1+2^2)^2 = 2^2 + 2*3^2 + 5^2 = 47 ;
a(3) = (1+1)^3 + 3*(1+2)^3 + 3*(1+2^2)^3 + (1+2^3)^3 = 2^3 + 3*3^3 + 3*5^3 + 9^3 = 1193 ;
a(4) = (1+1)^4 + 4*(1+2)^4 + 6*(1+2^2)^4 + 4*(1+2^3)^4 + (1+2^4)^4 = 2^4 + 4*3^4 + 6*5^4 + 4*9^4 + 17^4 = 113855.
-
Table[Sum[Binomial[n,k]*(1+2^k)^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 25 2013 *)
-
{a(n)=local(p=1, q=2);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
-
{a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
-
/* right side of the general binomial identity: */
{a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
A196457
E.g.f.: A(x) = Sum_{n>=0} exp((2^n + (-1)^n)*x) * (2^n + (-1)^n)^n * x^n/n!.
Original entry on oeis.org
1, 3, 31, 729, 96895, 35927793, 81108563671, 567783612614529, 19581520178825073535, 2420011073132910603900513, 1292280969200128366004695992151, 2658679109878459106807828064662797809, 22431208469091982323298987880694649428158815, 748294346623782293365235855701111498805828889778353
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 31*x^2/2! + 729*x^3/3! + 96895*x^4/4! +...
where
A(x) = exp((1+1)*x) + (2-1)*exp((2-1)*x)*x + (2^2+1)^2*exp((2^2+1)*x)*x^2/2! + (2^3-1)^3*exp((2^3-1)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(2*x) + 1*exp(1*x)*x + 5^2*exp(5*x)*x^2/2! + 7^3*exp(7*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 31^5*exp(31*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (2-1) = 3 ;
a(2) = (1+1)^2 + 2*(2-1)^2 + (2^2+1)^2 = 2^2 + 2*1^2 + 5^2 = 31 ;
a(3) = (1+1)^3 + 3*(2-1)^3 + 3*(2^2+1)^3 + (2^3-1)^3 = 2^3 + 3*1^3 + 3*5^3 + 7^3 = 729 ;
a(4) = (1+1)^4 + 4*(2-1)^4 + 6*(2^2+1)^4 + 4*(2^3-1)^4 + (2^4+1)^4 = 2^4 + 4*1^4 + 6*5^4 + 4*7^4 + 17^4 = 96895.
-
{a(n)=n!*polcoeff(sum(m=0,n,exp((2^m+(-1)^m+x*O(x^n))*x)*(2^m+(-1)^m)^m*x^m/m!),n)}
-
{a(n)=sum(k=0,n,binomial(n,k)*(2^k + (-1)^k)^n)}
-
{a(n)=local(p=-1, q=2);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
-
{a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
-
/* right side of the general binomial identity: */
{a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
A196459
E.g.f.: A(x) = Sum_{n>=0} (2^n + 3^n)^n * exp((5*2^n + 2*3^n)*x) * x^n/n!.
Original entry on oeis.org
1, 12, 378, 66324, 106198818, 1683766925772, 254853525616593498, 359442643592845468030044, 4678184388343291088594901552738, 559325487076698590861626663741490993292, 612293179823760898820162678475549198446848819338
Offset: 0
E.g.f.: A(x) = 1 + 12*x + 378*x^2/2! + 66324*x^3/3! + 106198818*x^4/4! +...
where
A(x) = exp((5+2)*x) + (2+3)*exp((5*2+2*3)*x)*x + (2^2+3^2)^2*exp((5*2^2+2*3^2)*x)*x^2/2! + (2^3+3^3)^3*exp((5*2^3+2*3^3)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(7*x) + 5*exp(16*x)*x + 13^2*exp(38*x)*x^2/2! + 35^3*exp(94*x)*x^3/3! + 97^4*exp(242*x)*x^4/4! + 275^5*exp(646*x)*x^5/5! +...
Illustrate formula (1):
a(1) = 7 + 5 = 12 ;
a(2) = 7^2 + 2*5*16 + 13^2 = 378 ;
a(3) = 7^3 + 3*5*16^2 + 3*13^2*38 + 35^3 = 66324 ;
a(4) = 7^4 + 4*5*16^3 + 6*13^2*38^2 + 4*35^3*94 + 97^4 = 106198818 ;
a(5) = 7^5 + 5*5*16^4 + 10*13^2*38^3 + 10*35^3*94^2 + 5*97^4*242 + 275^5 = 1683766925772; ...
Illustrate formula (2):
a(1) = 7 + 5 = 12 ;
a(2) = 9^2 + 2*11*8 + 14*11^2 = 378 ;
a(3) = 13^3 + 3*17^2*14 + 3*23*20^2 + 29^3 = 66324 ;
a(4) = 21^4 + 4*29^3*26 + 6*41^2*38^2 + 4*59*56^3 + 83^4 = 106198818 ;
a(5) = 37^5 + 5*53^4*50 + 10*77^3*74^2 + 10*113^2*110^3 + 5*167*164^4 + 1*245^5 = 1683766925772; ...
-
{a(n)=n!*polcoeff(sum(m=0,n,exp((5*2^m+2*3^m+x*O(x^n))*x)*(2^m+3^m)^m*x^m/m!),n)}
-
{a(n)=sum(k=0,n,binomial(n,k)*(5*2^k + 2*3^k)^(n-k)*(2^k + 3^k)^k)}
-
{a(n)=sum(k=0,n,binomial(n,k)*(5 + 2^(n-k)*3^k)^(n-k)*(2 + 2^(n-k)*3^k)^k)}
-
{a(n)=local(p=2, q=3,s=5,t=2,u=1,v=1);n!*polcoeff(sum(m=0,n,exp((s*p^m+t*q^m+x*O(x^n))*x)*(u*p^m+v*q^m)^m*x^m/m!),n)}
-
{a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
-
/* right side of the general binomial identity: */
{a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
A196458
E.g.f.: A(x) = Sum_{n>=0} (3^n + (-1)^n)^n * exp((3^n + (-1)^n)*x) * x^n/n!.
Original entry on oeis.org
1, 4, 112, 20608, 47100160, 848654393344, 152543949079048192, 239308785705492230176768, 3442046584639832610980531077120, 443426848780270385458655031044167696384, 515552048984399455145742768443316759297510080512
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 112*x^2/2! + 20608*x^3/3! + 47100160*x^4/4! +...
where
_ A(x) = exp((1+1)*x) + (3-1)*exp((3-1)*x)*x + (3^2+1)^2*exp((3^2+1)*x)*x^2/2! + (3^3-1)^3*exp((3^3-1)*x)*x^3/3! +...
or, equivalently,
_ A(x) = exp(2*x) + 2*exp(2*x)*x + 10^2*exp(10*x)*x^2/2! + 26^3*exp(26*x)*x^3/3! + 82^4*exp(82*x)*x^4/4! + 242^5*exp(242*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (3-1) = 4 ;
a(2) = (1+1)^2 + 2*(3-1)^2 + (3^2+1)^2 = 2^2 + 2*2^2 + 10^2 = 112 ;
a(3) = (1+1)^3 + 3*(3-1)^3 + 3*(3^2+1)^3 + (3^3-1)^3 = 2^3 + 3*2^3 + 3*10^3 + 26^3 = 20608 ;
a(4) = (1+1)^4 + 4*(3-1)^4 + 6*(3^2+1)^4 + 4*(3^3-1)^4 + (3^4+1)^4 = 2^4 + 4*2^4 + 6*10^4 + 4*26^4 + 82^4 = 47100160.
-
{a(n)=sum(k=0,n,binomial(n,k)*(3^k + (-1)^k)^n)}
-
{a(n)=sum(k=0,n,binomial(n,k)*(1 + (-1)^(n-k)*3^k)^n)}
-
{a(n)=local(p=-1, q=3);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
-
{a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
-
/* right side of the general binomial identity: */
{a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1);
sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}
A326599
G.f.: Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x*(1 + x^n))^(n+1).
Original entry on oeis.org
1, 3, 8, 19, 44, 97, 207, 432, 884, 1777, 3529, 6942, 13547, 26281, 50791, 97942, 188677, 363489, 700953, 1354060, 2621602, 5088832, 9905382, 19335477, 37848971, 74287855, 146173721, 288280956, 569715036, 1127957956, 2236777539, 4441749653, 8830819362, 17574636239, 35005944165, 69776276002, 139165947494
Offset: 0
G.f.: A(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 44*x^4 + 97*x^5 + 207*x^6 + 432*x^7 + 884*x^8 + 1777*x^9 + 3529*x^10 + 6942*x^11 + 13547*x^12 + 26281*x^13 + ...
such that
A(x) = 1/(1-2*x) + x*(1+x)/(1 - x*(1+x))^2 + x^2*(1+x^2)^2/(1 - x*(1+x^2))^3 + x^3*(1+x^3)^3/(1 - x*(1+x^3))^4 + x^4*(1+x^4)^4/(1 - x*(1+x^4))^5 + x^5*(1+x^5)^5/(1 - x*(1+x^5))^6 + x^6*(1+x^6)^6/(1 - x*(1+x^6))^7 + ...
-
{a(n) = my(A = sum(m=0,n, x^m * (1 + x^m +x*O(x^n))^m /(1 - x*(1+x^m) +x*O(x^n))^(m+1) )); polcoeff(A,n)}
for(n=0,50,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments