cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A133049 Squares of Mersenne primes A000668(n).

Original entry on oeis.org

9, 49, 961, 16129, 67092481, 17179607041, 274876858369, 4611686014132420609, 5316911983139663487003542222693990401, 383123885216472214589586755549637256619304505646776321
Offset: 1

Views

Author

Omar E. Pol, Oct 30 2007, Apr 23 2008

Keywords

Comments

Sum of last A000043(n) divisors of the n-th even perfect number. In other words; sum of divisors that are not powers of 2 of the n-th even perfect number, or sum of divisors that are multiples of the n-th Mersenne prime A000668(n) of the n-th even perfect number. See A139247 for more information.
See the structure of the divisors of perfect numbers in A135652, A135653, A135654 and A135655.

Examples

			a(3)=961 because the 3rd Mersenne prime is 31 and 31^2=961.
		

Crossrefs

Programs

  • Mathematica
    Select[2^Range[1000] - 1, PrimeQ]^2 (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    forprime(p=2, 1000, if(ispseudoprime(2^p-1), print1((2^p-1)^2", "))) \\ G. C. Greubel, Oct 03 2017

Formula

a(n) = A000668(n)^2

Extensions

More terms from Olaf Voß, Feb 13 2008

A094617 Triangular array T of numbers generated by these rules: 2 is in T; and if x is in T, then 2x-1 and 3x-2 are in T.

Original entry on oeis.org

2, 3, 4, 5, 7, 10, 9, 13, 19, 28, 17, 25, 37, 55, 82, 33, 49, 73, 109, 163, 244, 65, 97, 145, 217, 325, 487, 730, 129, 193, 289, 433, 649, 973, 1459, 2188, 257, 385, 577, 865, 1297, 1945, 2917, 4375, 6562, 513, 769, 1153, 1729, 2593, 3889, 5833, 8749, 13123, 19684
Offset: 1

Views

Author

Clark Kimberling, May 14 2004

Keywords

Comments

To obtain row n from row n-1, apply 2x-1 to each x in row n-1 and then put 1+3^n at the end. Or, instead, apply 3x-2 to each x in row n-1 and then put 1+2^n at the beginning.
From Lamine Ngom, Feb 10 2021: (Start)
Triangle read by diagonals provides all the sequences of the form 1+2^(k-1)*3^n, where k is the k-th diagonal.
For instance, the terms of the first diagonal form the sequence 2, 4, 10, 28, ..., i.e., 1+3^n (A034472).
The 2nd diagonal leads to the sequence 3, 7, 19, 55, ..., i.e., 1+2*3^n (A052919).
The 3rd diagonal is the sequence 5, 13, 37, 109, ..., i.e., 1+4*3^n (A199108).
And for k = 4, we obtain the sequence 9, 25, 73, 217, ..., i.e., 1+8*3^n (A199111). (End)

Examples

			Rows of this triangle begin:
    2;
    3,   4;
    5,   7,   10;
    9,  13,   19,   28;
   17,  25,   37,   55,   82;
   33,  49,   73,  109,  163,  244;
   65,  97,  145,  217,  325,  487,  730;
  129, 193,  289,  433,  649,  973, 1459, 2188;
  257, 385,  577,  865, 1297, 1945, 2917, 4375,  6562;
  513, 769, 1153, 1729, 2593, 3889, 5833, 8749, 13123, 19684;
  ...
		

Crossrefs

Programs

  • Mathematica
    FoldList[Append[2 #1 - 1, 1 + 3^#2] &, {2}, Range[9]] // Flatten (* Ivan Neretin, Mar 30 2016 *)

Formula

When offset is zero, then the first term is T(0,0) = 2, and
T(n,0) = 1 + 2^n = A000051(n),
T(n,n) = 1 + 3^n = A048473(n),
T(2n,n) = 1 + 6^n = A062394(n).
Row sums = A094618.
a(n) = A036561(n-1) + 1. - Filip Zaludek, Nov 19 2016

A196460 E.g.f.: A(x) = Sum_{n>=0} (1+2^n)^n * exp((1+2^n)*x) * x^n/n!.

Original entry on oeis.org

1, 5, 47, 1193, 113855, 46857665, 83540629607, 629692415941433, 19653639560140008575, 2505063418700072099312705, 1292764583816731772891346438887, 2687238342732260436646020885678131993, 22431974111110989403331425804893720873764255
Offset: 0

Views

Author

Paul D. Hanna, Oct 02 2011

Keywords

Comments

GENERAL BINOMIAL IDENTITY.
When p=1, q=2, this sequence illustrates the following identity.
Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!,
then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n = Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n;
which is a special case of the more general binomial identity:
Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.

Examples

			E.g.f.: A(x) = 1 + 5*x + 47*x^2/2! + 1193*x^3/3! + 113855*x^4/4! +...
where
A(x) = exp((1+1)*x) + (1+2)*exp((1+2)*x)*x + (1+2^2)^2*exp((1+2^2)*x)*x^2/2! + (1+2^3)^3*exp((1+2^3)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(2*x) + 3*exp(3*x)*x + 5^2*exp(5*x)*x^2/2! + 9^3*exp(9*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 33^5*exp(33*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (1+2) = 5 ;
a(2) = (1+1)^2 + 2*(1+2)^2 + (1+2^2)^2 = 2^2 + 2*3^2 + 5^2 = 47 ;
a(3) = (1+1)^3 + 3*(1+2)^3 + 3*(1+2^2)^3 + (1+2^3)^3 = 2^3 + 3*3^3 + 3*5^3 + 9^3 = 1193 ;
a(4) = (1+1)^4 + 4*(1+2)^4 + 6*(1+2^2)^4 + 4*(1+2^3)^4 + (1+2^4)^4 = 2^4 + 4*3^4 + 6*5^4 + 4*9^4 + 17^4 = 113855.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*(1+2^k)^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 25 2013 *)
  • PARI
    {a(n)=local(p=1, q=2);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
    
  • PARI
    {a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
    
  • PARI
    /* right side of the general binomial identity: */
    {a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}

Formula

GENERATING FUNCTIONS.
E.g.f.: Sum_{n>=0} (1 + 2^n)^n * exp( (1 + 2^n)*x ) * x^n / n!.
O.g.f.: Sum_{n>=0} (1 + 2^n)^n * x^n / (1 - (1 + 2^n)*x)^(n+1). - Paul D. Hanna, Jul 13 2019
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 2^k)^n.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jun 25 2013

A196457 E.g.f.: A(x) = Sum_{n>=0} exp((2^n + (-1)^n)*x) * (2^n + (-1)^n)^n * x^n/n!.

Original entry on oeis.org

1, 3, 31, 729, 96895, 35927793, 81108563671, 567783612614529, 19581520178825073535, 2420011073132910603900513, 1292280969200128366004695992151, 2658679109878459106807828064662797809, 22431208469091982323298987880694649428158815, 748294346623782293365235855701111498805828889778353
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2011

Keywords

Comments

GENERAL BINOMIAL IDENTITY.
When p=-1, q=2, this sequence illustrates the following identity.
Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!,
then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n = Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n;
which is a special case of the more general binomial identity:
Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.

Examples

			E.g.f.: A(x) = 1 + 3*x + 31*x^2/2! + 729*x^3/3! + 96895*x^4/4! +...
where
A(x) = exp((1+1)*x) + (2-1)*exp((2-1)*x)*x + (2^2+1)^2*exp((2^2+1)*x)*x^2/2! + (2^3-1)^3*exp((2^3-1)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(2*x) + 1*exp(1*x)*x + 5^2*exp(5*x)*x^2/2! + 7^3*exp(7*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 31^5*exp(31*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (2-1) = 3 ;
a(2) = (1+1)^2 + 2*(2-1)^2 + (2^2+1)^2 = 2^2 + 2*1^2 + 5^2 = 31 ;
a(3) = (1+1)^3 + 3*(2-1)^3 + 3*(2^2+1)^3 + (2^3-1)^3 = 2^3 + 3*1^3 + 3*5^3 + 7^3 = 729 ;
a(4) = (1+1)^4 + 4*(2-1)^4 + 6*(2^2+1)^4 + 4*(2^3-1)^4 + (2^4+1)^4 = 2^4 + 4*1^4 + 6*5^4 + 4*7^4 + 17^4 = 96895.
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,exp((2^m+(-1)^m+x*O(x^n))*x)*(2^m+(-1)^m)^m*x^m/m!),n)}
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(2^k + (-1)^k)^n)}
    
  • PARI
    {a(n)=local(p=-1, q=2);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
    
  • PARI
    {a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
    
  • PARI
    /* right side of the general binomial identity: */
    {a(n)=local(p=-1, q=2, s=1, t=1, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}

Formula

GENERATING FUNCTIONS.
E.g.f.: Sum_{n>=0} (2^n + (-1)^n)^n * exp( (2^n + (-1)^n)*x ) * x^n/n!.
O.g.f.: Sum_{n>=0} (2^n + (-1)^n)^n * x^n / (1 - (2^n + (-1)^n)*x)^(n+1). - Paul D. Hanna, Jul 13 2019
FORMULAS FOR TERMS.
a(n) = Sum_{k=0..n} C(n,k)*(2^k + (-1)^k)^n.

A196459 E.g.f.: A(x) = Sum_{n>=0} (2^n + 3^n)^n * exp((5*2^n + 2*3^n)*x) * x^n/n!.

Original entry on oeis.org

1, 12, 378, 66324, 106198818, 1683766925772, 254853525616593498, 359442643592845468030044, 4678184388343291088594901552738, 559325487076698590861626663741490993292, 612293179823760898820162678475549198446848819338
Offset: 0

Views

Author

Paul D. Hanna, Oct 04 2011

Keywords

Comments

This sequence illustrates the following general binomial identity.
Given e.g.f.: Sum_{n>=0} exp((s*p^n + t*q^n)*x) * (u*p^n + v*q^n)^n * x^n/n! = Sum_{n>=0} a(n)*x^n/n!,
then a(n) = Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.

Examples

			E.g.f.: A(x) = 1 + 12*x + 378*x^2/2! + 66324*x^3/3! + 106198818*x^4/4! +...
where
A(x) = exp((5+2)*x) + (2+3)*exp((5*2+2*3)*x)*x + (2^2+3^2)^2*exp((5*2^2+2*3^2)*x)*x^2/2! + (2^3+3^3)^3*exp((5*2^3+2*3^3)*x)*x^3/3! +...
or, equivalently,
A(x) = exp(7*x) + 5*exp(16*x)*x + 13^2*exp(38*x)*x^2/2! + 35^3*exp(94*x)*x^3/3! + 97^4*exp(242*x)*x^4/4! + 275^5*exp(646*x)*x^5/5! +...
Illustrate formula (1):
a(1) = 7 + 5 = 12 ;
a(2) = 7^2 + 2*5*16 + 13^2 = 378 ;
a(3) = 7^3 + 3*5*16^2 + 3*13^2*38 + 35^3 = 66324 ;
a(4) = 7^4 + 4*5*16^3 + 6*13^2*38^2 + 4*35^3*94 + 97^4 = 106198818 ;
a(5) = 7^5 + 5*5*16^4 + 10*13^2*38^3 + 10*35^3*94^2 + 5*97^4*242 + 275^5 = 1683766925772; ...
Illustrate formula (2):
a(1) = 7 + 5 = 12 ;
a(2) = 9^2 + 2*11*8 + 14*11^2 = 378 ;
a(3) = 13^3 + 3*17^2*14 + 3*23*20^2 + 29^3 = 66324 ;
a(4) = 21^4 + 4*29^3*26 + 6*41^2*38^2 + 4*59*56^3 + 83^4 = 106198818 ;
a(5) = 37^5 + 5*53^4*50 + 10*77^3*74^2 + 10*113^2*110^3 + 5*167*164^4 + 1*245^5 = 1683766925772; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,exp((5*2^m+2*3^m+x*O(x^n))*x)*(2^m+3^m)^m*x^m/m!),n)}
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(5*2^k + 2*3^k)^(n-k)*(2^k + 3^k)^k)}
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(5 + 2^(n-k)*3^k)^(n-k)*(2 + 2^(n-k)*3^k)^k)}
    
  • PARI
    {a(n)=local(p=2, q=3,s=5,t=2,u=1,v=1);n!*polcoeff(sum(m=0,n,exp((s*p^m+t*q^m+x*O(x^n))*x)*(u*p^m+v*q^m)^m*x^m/m!),n)}
    
  • PARI
    {a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
    
  • PARI
    /* right side of the general binomial identity: */
    {a(n)=local(p=2, q=3, s=5, t=2, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}

Formula

(1) a(n) = Sum_{k=0..n} C(n,k)*(5*2^k + 2*3^k)^(n-k)*(2^k + 3^k)^k.
(2) a(n) = Sum_{k=0..n} C(n,k)*(5 + 2^(n-k)*3^k)^(n-k)*(2 + 2^(n-k)*3^k)^k.

A196458 E.g.f.: A(x) = Sum_{n>=0} (3^n + (-1)^n)^n * exp((3^n + (-1)^n)*x) * x^n/n!.

Original entry on oeis.org

1, 4, 112, 20608, 47100160, 848654393344, 152543949079048192, 239308785705492230176768, 3442046584639832610980531077120, 443426848780270385458655031044167696384, 515552048984399455145742768443316759297510080512
Offset: 0

Views

Author

Paul D. Hanna, Nov 20 2011

Keywords

Comments

When p=-1, q=3, this sequence illustrates the following identity.
Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!,
then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n = Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n;
which is a special case of the more general binomial identity:
Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k.

Examples

			 E.g.f.: A(x) = 1 + 4*x + 112*x^2/2! + 20608*x^3/3! + 47100160*x^4/4! +...
where
_ A(x) = exp((1+1)*x) + (3-1)*exp((3-1)*x)*x + (3^2+1)^2*exp((3^2+1)*x)*x^2/2! + (3^3-1)^3*exp((3^3-1)*x)*x^3/3! +...
or, equivalently,
_ A(x) = exp(2*x) + 2*exp(2*x)*x + 10^2*exp(10*x)*x^2/2! + 26^3*exp(26*x)*x^3/3! + 82^4*exp(82*x)*x^4/4! + 242^5*exp(242*x)*x^5/5! +...
Illustrate the formula for the terms:
a(1) = (1+1) + (3-1) = 4 ;
a(2) = (1+1)^2 + 2*(3-1)^2 + (3^2+1)^2 = 2^2 + 2*2^2 + 10^2 = 112 ;
a(3) = (1+1)^3 + 3*(3-1)^3 + 3*(3^2+1)^3 + (3^3-1)^3 = 2^3 + 3*2^3 + 3*10^3 + 26^3 = 20608 ;
a(4) = (1+1)^4 + 4*(3-1)^4 + 6*(3^2+1)^4 + 4*(3^3-1)^4 + (3^4+1)^4 = 2^4 + 4*2^4 + 6*10^4 + 4*26^4 + 82^4 = 47100160.
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(3^k + (-1)^k)^n)}
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)*(1 + (-1)^(n-k)*3^k)^n)}
    
  • PARI
    {a(n)=local(p=-1, q=3);n!*polcoeff(sum(m=0,n,(p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!),n)}
    
  • PARI
    {a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)}
    
  • PARI
    /* right side of the general binomial identity: */
    {a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1);
    sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)}

Formula

a(n) = Sum_{k=0..n} C(n,k)*(3^k + (-1)^k)^n.
a(n) = Sum_{k=0..n} C(n,k)*(1 + (-1)^(n-k)*3^k)^n.

A326599 G.f.: Sum_{n>=0} x^n * (1 + x^n)^n / (1 - x*(1 + x^n))^(n+1).

Original entry on oeis.org

1, 3, 8, 19, 44, 97, 207, 432, 884, 1777, 3529, 6942, 13547, 26281, 50791, 97942, 188677, 363489, 700953, 1354060, 2621602, 5088832, 9905382, 19335477, 37848971, 74287855, 146173721, 288280956, 569715036, 1127957956, 2236777539, 4441749653, 8830819362, 17574636239, 35005944165, 69776276002, 139165947494
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2019

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 44*x^4 + 97*x^5 + 207*x^6 + 432*x^7 + 884*x^8 + 1777*x^9 + 3529*x^10 + 6942*x^11 + 13547*x^12 + 26281*x^13 + ...
such that
A(x) = 1/(1-2*x) + x*(1+x)/(1 - x*(1+x))^2 + x^2*(1+x^2)^2/(1 - x*(1+x^2))^3 + x^3*(1+x^3)^3/(1 - x*(1+x^3))^4 + x^4*(1+x^4)^4/(1 - x*(1+x^4))^5  + x^5*(1+x^5)^5/(1 - x*(1+x^5))^6 + x^6*(1+x^6)^6/(1 - x*(1+x^6))^7 + ...
		

Crossrefs

Cf. A138247.

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, x^m * (1 + x^m +x*O(x^n))^m /(1 - x*(1+x^m)  +x*O(x^n))^(m+1) )); polcoeff(A,n)}
    for(n=0,50,print1(a(n),", "))
Showing 1-7 of 7 results.