A196504 Decimal expansion of the least x > 0 satisfying x + tan(x) = 0.
2, 0, 2, 8, 7, 5, 7, 8, 3, 8, 1, 1, 0, 4, 3, 4, 2, 2, 3, 5, 7, 6, 9, 7, 1, 1, 2, 4, 7, 3, 4, 7, 1, 4, 3, 7, 6, 1, 0, 8, 3, 8, 0, 0, 2, 8, 7, 5, 9, 3, 9, 4, 0, 8, 8, 8, 1, 7, 1, 6, 6, 0, 7, 4, 4, 4, 9, 8, 6, 6, 5, 0, 3, 1, 0, 4, 2, 7, 6, 2, 3, 4, 5, 9, 2, 2, 7, 9, 5, 1, 5, 0, 4, 2, 5, 6, 3, 0, 6, 3, 9
Offset: 1
Examples
L = 2.02875783811043422357697112473471437610838002... 1/L = 0.4929124517549075741877801898222329769156970132...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 239.
Programs
-
Mathematica
Plot[{Sin[x], x/Sqrt[1 + x^2]}, {x, 0, 9}] t = x /.FindRoot[Sin[x] == x/Sqrt[1 + x^2], {x, .10, 3}, WorkingPrecision -> 100] RealDigits[t] (* A196504 *) 1/t RealDigits[1/t] (* A196505 *)
-
PARI
solve(x=2,3, sin(x)-x/sqrt(1+x^2)) \\ Charles R Greathouse IV, Feb 11 2025
Comments