cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196506 a(n) = 1*3*5 + 3*5*7 + 5*7*9 + ... (n terms).

Original entry on oeis.org

0, 15, 120, 435, 1128, 2415, 4560, 7875, 12720, 19503, 28680, 40755, 56280, 75855, 100128, 129795, 165600, 208335, 258840, 318003, 386760, 466095, 557040, 660675, 778128, 910575, 1059240, 1225395, 1410360, 1615503, 1842240, 2092035
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Comments

All terms are multiples of 3.

References

  • Jolley, Summation of Series, Dover (1961), eq (43) page 8.

Crossrefs

Cf. A061550 (first differences).

Programs

  • Magma
    [((4*n^2-1)*(2*n+3)*(2*n+5)+15)/ 8 : n in [0..30]]; // Vincenzo Librandi, Oct 05 2011
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,15,120,435,1128},40] (* or *) Accumulate[ Join[{0},Times@@@Partition[Range[1,111,2],3,1]]] (* or *) Table[2n^4-5n^2+3,{n,40}](* Harvey P. Dale, Mar 14 2015 *)

Formula

a(n) = ((4n^2 - 1)*(2n + 3)*(2n + 5) + 15)/ 8 = Sum_{i=1..n} (2i - 1)*(2i + 1)*(2i + 3).
G.f. -3*x*(5 + 15*x - 5*x^2 + x^3) / (x-1)^5 .
a(n) = 2 n^4 + 8 n^3 + 7 n^2 - 2 n. - Harvey P. Dale, Mar 14 2015, corrected by Eric Rowland, Aug 15 2017