cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196521 Decimal expansion of Pi/4-log(2)/2.

Original entry on oeis.org

4, 3, 8, 8, 2, 4, 5, 7, 3, 1, 1, 7, 4, 7, 5, 6, 5, 4, 9, 0, 7, 0, 4, 4, 7, 8, 5, 0, 9, 0, 7, 8, 7, 4, 3, 7, 0, 1, 1, 5, 4, 2, 2, 8, 2, 6, 6, 3, 6, 4, 8, 8, 2, 8, 1, 8, 3, 3, 9, 6, 1, 4, 3, 3, 3, 0, 2, 5, 7, 2, 9, 0, 5, 8, 6
Offset: 0

Views

Author

R. J. Mathar, Oct 03 2011

Keywords

Examples

			0.438824573117475654907044785090787437011542282663648828183396143330257...
		

References

  • L. B. W. Jolley, Summation of series, Dover Publications Inc., New York, 1961, p. 14 (eq. 72).

Crossrefs

Cf. A003881, A016655 (10*log(2)/2), A033264.
Cf. A231902 (Pi/4+log(2)/2), A342316.

Programs

Formula

Equals 1 - 1/2 - 1/3 + 1/4 + 1/5 - ....
Equals Sum_{n>=0} 2/((4*n+2)*(4*n+3)). - Peter Luschny, Dec 06 2013
Equals Sum_{n>=1} (-1)^(n+1)/((2*n-1)*(2*n)). - Robert FERREOL, Dec 14 2015
Equals Integral_{x=0..1} (arctan(x)) dx = Integral_{x=0..Pi/4} (x / cos(x)^2) dx = Integral_{x=0..1/sqrt(2)} (arcsin(x)/(1-x^2)^(3/2)) dx. - Robert FERREOL, Dec 14 2015
Equals Integral_{x>=0} (exp(x) - 1)/(exp(2*x) + 1) dx. - Peter Bala, Nov 01 2019
From Bernard Schott, Sep 07 2020: (Start)
Equals Sum_{n>=1} (-1)^(n*(n-1)/2) / n [compare with A231902 formula].
Equals Sum_{n>=0} (8*n+5) / (4*(n+1)*(2*n+1)*(4*n+1)*(4*n+3)). (End)
Equals Sum_{k>=1} A033264(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
From Peter Bala, Mar 04 2025: (Start)
Equals (1/2) * A342316.
Equals Integral_{x = 0..1} x/(x^2 - 2*x + 2) = Integral_{x = 0..1} x*(1 + x)/(2 - x^2*(1 - x)) dx.
Equals (5/2)*Sum_{n >= 1} 1/(n*binomial(3*n, n)*2^n). The first 10 terms of the series gives the approximate value 0.43882457311(68...), correct to 11 decimal places. (End)