A196667 The Chebyshev primes of index 1.
109, 113, 139, 181, 197, 199, 241, 271, 281, 283, 293, 313, 317, 443, 449, 461, 463, 467, 479, 491, 503, 509, 523, 619, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 761, 769, 773, 829, 859, 863, 883, 887, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1091, 1093, 1097
Offset: 1
Keywords
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..10000
- M. Planat and P. Solé, Efficient prime counting and the Chebyshev primes arXiv:1109.6489 [math.NT], 2011.
- L. Schoenfeld, Sharper bounds for the Chebyshev functions theta(x) and psi(x). II, Math. Comp. 30 (1975) 337-360.
Programs
-
Magma
Mangoldt:=function(n); if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if; end function; tcheb:=function(n); x:=0; for i in [1..n] do x:=x+Mangoldt(i); end for; return(x); end function; jump1:=function(n); x:=LogIntegral(tcheb(NthPrime(n)))-LogIntegral(tcheb(NthPrime(n)-1)); return x; end function; Set1:=[]; for i in [2..1000] do if jump1(i)-1 lt 0 then Set1:=Append(Set1,NthPrime(i)); NthPrime(i); end if; end for; Set1;
-
Maple
PlanatSole := proc(n,r) local j, p, pr, psi, L; L := NULL; psi := n -> add(log(i/ilcm(op(numtheory[divisors](i) minus {1,i}))),i=1..n); for j in [$3..n] do p := ithprime(j); pr := p^r; if evalf(Li(psi(pr))-Li(psi(pr-1))) < 1/r then L:= L,p fi od; L end: A196667 := n -> PlanatSole(n,1); # Peter Luschny, Oct 23 2011
-
Mathematica
ChebyshevPsi[n_] := Log[LCM @@ Range[n]]; Reap[Do[If[LogIntegral[ChebyshevPsi[p]] - LogIntegral[ChebyshevPsi[p - 1]] < 1, Sow[p]], {p, Prime[Range[2, 200]]}]][[2, 1]] (* Jean-François Alcover, Nov 17 2017, updated Dec 06 2018 *)
-
Perl
use ntheory ":all"; forprimes { say if LogarithmicIntegral(chebyshev_psi($))-LogarithmicIntegral(chebyshev_psi($-1)) < 1 } 3,1000; # Dana Jacobsen, Dec 29 2015
-
Sage
from mpmath import mp, mangoldt mp.dps = 25; def psi(n) : return sum(mangoldt(i) for i in (1..n)) def PlanatSole(n,r) : P = Primes(); L = [] for j in (2..n): p = P.unrank(j) pr = p^r if Li(psi(pr)) - Li(psi(pr-1)) < 1/r : L.append(p) return L def A196667List(n) : return PlanatSole(n,1) A196667List(100) # Peter Luschny, Oct 23 2011
Comments