cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A196668 The Chebyshev primes of index 2.

Original entry on oeis.org

17, 29, 41, 53, 61, 71, 83, 89, 101, 103, 113, 127, 137, 149, 151, 157, 193, 211, 239, 241, 251, 257, 269, 293, 307, 311, 313, 317, 331, 353, 359, 373, 379, 389, 397, 401, 433, 439, 443, 457, 461, 463, 479, 499, 503, 509, 521, 523, 569, 571, 577, 587, 593, 599
Offset: 1

Views

Author

Michel Planat, Oct 05 2011

Keywords

Comments

The sequence consists of such odd prime numbers p that satisfy li[psi(p^2)]-li[psi(p^2-1)]<1/2, where li(x) is the logarithmic integral and psi(x) is the Chebyshev's psi function.

Crossrefs

Programs

  • Magma
    Mangoldt:=function(n);
    if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if;
    end function;
    tcheb:=function(n);
    x:=0;
    for i in [1..n] do
    x:=x+Mangoldt(i);
    end for;
    return(x);
    end function;
    jump2:=function(n);
    x:=LogIntegral(tcheb(NthPrime(n)^2))-LogIntegral(tcheb(NthPrime(n)^2-1));
    return x;
    end function;
    Set2:=[];
    for i in [2..1000] do
    if jump2(i)-1/2 lt 0 then Set2:=Append(Set2,NthPrime(i)); NthPrime(i); end if;
    end for;
    Set2;
    
  • Maple
    # The function PlanatSole(n,r) is in A196667.
    A196668 := n -> PlanatSole(n,2); # Peter Luschny, Oct 23 2011
  • Mathematica
    ChebyshevPsi[n_] := Log[LCM @@ Range[n]];
    Reap[Do[If[LogIntegral[ChebyshevPsi[p^2]] - LogIntegral[ChebyshevPsi[p^2 - 1]] < 1/2, Print[p]; Sow[p]], {p, Prime[Range[2, 200]]}]][[2, 1]] (* Jean-François Alcover, Jul 14 2018, updated Dec 06 2018 *)
  • Perl
    use ntheory ":all"; forprimes { say if 2 * (LogarithmicIntegral(chebyshev_psi($**2)) - LogarithmicIntegral(chebyshev_psi($**2-1))) < 1 } 3, 1000; # Dana Jacobsen, Dec 29 2015
  • Sage
    def A196668(n) : return PlanatSole(n,2)
    # The function PlanatSole(n,r) is in A196667.
    # Peter Luschny, Oct 23 2011
    

A196669 The Chebyshev primes of index 3.

Original entry on oeis.org

11, 19, 29, 61, 71, 97, 101, 107, 109, 113, 127, 131, 149, 151, 173, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 257, 269, 281, 307, 311, 313, 317, 347, 349, 359, 373, 383, 389, 401, 409, 419, 421, 433, 439, 461, 479, 503, 509, 557, 563, 569, 571, 607
Offset: 1

Views

Author

Michel Planat, Oct 05 2011

Keywords

Comments

The sequence consists of such odd prime numbers p that satisfy li[psi(p^3)]-li[psi(p^3-1)]<1/3, where li(x) is the logarithmic integral and psi(x) is the Chebyshev's psi function.

Crossrefs

Programs

  • Magma
    Mangoldt:=function(n);
    if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if;
    end function;
    tcheb:=function(n);
    x:=0;
    for i in [1..n] do
    x:=x+Mangoldt(i);
    end for;
    return(x);
    end function;
    jump3:=function(n);
    x:=LogIntegral(tcheb(NthPrime(n)^3))-LogIntegral(tcheb(NthPrime(n)^3-1));
    return x;
    end function;
    Set3:=[];
    for i in [2..1000] do
    if jump3(i)-1/3 lt 0 then Set3:=Append(Set3,NthPrime(i)); NthPrime(i); end if;
    end for;
    Set3;
    
  • Maple
    # The function PlanatSole(n,r) is in A196667.
    A196669 := n -> PlanatSole(n,3); # Peter Luschny, Oct 23 2011
  • Mathematica
    ChebyshevPsi[n_] := Log[LCM @@ Range[n]];
    Reap[Do[If[LogIntegral[ChebyshevPsi[p^3]] - LogIntegral[ChebyshevPsi[p^3 - 1]] < 1/3, Print[p]; Sow[p]], {p, Prime[Range[2, 120]]}]][[2, 1]] (* Jean-François Alcover, Jul 14 2018, updated Dec 06 2018 *)
  • Perl
    use ntheory ":all"; forprimes { say if 3 * (LogarithmicIntegral(chebyshev_psi($**3)) - LogarithmicIntegral(chebyshev_psi($**3-1))) < 1 } 3, 1000; # Dana Jacobsen, Dec 29 2015
  • Sage
    def A196669(n) : return PlanatSole(n,3)
    # The function PlanatSole(n,r) is in A196667.
    # Peter Luschny, Oct 23 2011
    

Extensions

Corrected and extended by Dana Jacobsen, Dec 29 2015

A196670 The Chebyshev primes of index 4.

Original entry on oeis.org

5, 7, 17, 19, 31, 37, 41, 43, 53, 59, 67, 73, 79, 83, 101, 103, 107, 127, 131, 149, 157, 163, 179, 181, 197, 199, 211, 223, 227, 257, 269, 277, 281, 317, 331, 337, 347, 353, 379, 389, 419, 421, 439, 461, 463, 467, 479, 491, 499, 509, 541, 563, 569, 577, 617
Offset: 1

Views

Author

Michel Planat, Oct 05 2011

Keywords

Comments

The sequence consists of such odd prime numbers p that satisfy li(psi(p^4)) - li(psi(p^4-1)) < 1/4, where li(x) is the logarithmic integral and psi(x) is the Chebyshev psi function.

Crossrefs

Programs

  • Magma
    Mangoldt:=function(n);
    if #Factorization(n) eq 1 then return Log(Factorization(n)[1][1]); else return 0; end if;
    end function;
    tcheb:=function(n);
    x:=0;
    for i in [1..n] do
    x:=x+Mangoldt(i);
    end for;
    return(x);
    end function;
    jump4:=function(n);
    x:=LogIntegral(tcheb(NthPrime(n)^4))-LogIntegral(tcheb(NthPrime(n)^4-1));
    return x;
    end function;
    Set4:=[];
    for i in [2..1000] do
    if jump4(i)-1/4 lt 0 then Set4:=Append(Set4,NthPrime(i)); NthPrime(i); end if;
    end for;
    Set4;
    
  • Maple
    # The function PlanatSole(n,r) is in A196667.
    A196670 := n -> PlanatSole(n,4); # Peter Luschny, Oct 23 2011
  • Mathematica
    ChebyshevPsi[n_] := Log[LCM @@ Range[n]];
    Reap[Do[If[LogIntegral[ChebyshevPsi[p^4]] - LogIntegral[ChebyshevPsi[p^4 - 1]] < 1/4, Print[p]; Sow[p]], {p, Prime[Range[2, 120]]}]][[2, 1]] (* Jean-François Alcover, Jul 14 2018, updated Dec 06 2018 *)
  • Perl
    use ntheory ":all"; forprimes { say if 4 *(LogarithmicIntegral(chebyshev_psi($**4)) - LogarithmicIntegral(chebyshev_psi($**4-1))) < 1 } 3,100; # Dana Jacobsen, Dec 29 2015
  • Sage
    def A196670(n) : return PlanatSole(n,4)
    # The function PlanatSole(n,r) is in A196667.
    # Peter Luschny, Oct 23 2011
    

Extensions

More terms from Dana Jacobsen, Dec 29 2015

A197185 The Riemann primes of the psi type and index 1.

Original entry on oeis.org

2, 59, 73, 97, 109, 113, 199, 283, 463, 467, 661, 1103, 1109, 1123, 1129, 1321, 1327, 1423, 2657, 2803, 2861, 3299, 5381, 5881, 6373, 6379, 9859, 9931, 9949, 10337, 10343, 11777, 19181, 19207, 19373, 24107, 24109, 24113, 24121, 24137, 42751, 42793, 42797
Offset: 1

Views

Author

Michel Planat, Oct 11 2011

Keywords

Comments

The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |psi(p)-p|, where psi(p) is the Chebyshev psi function.

Crossrefs

Programs

  • Mathematica
    ChebyshevPsi[n_] := Range[n] // MangoldtLambda // Total;
    Reap[For[max=0; p=2, p<50000, p = NextPrime[p], f = Abs[ChebyshevPsi[p]-p]; If[f > max, max = f; Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 03 2018 *)
  • Perl
    use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_psi($)-$); if ($f > $max) { say; $max=$f; } } 10000; # Dana Jacobsen, Dec 29 2015

A197297 The Riemann primes of the theta type and index 1.

Original entry on oeis.org

2, 5, 7, 11, 17, 29, 37, 41, 53, 59, 97, 127, 137, 149, 191, 223, 307, 331, 337, 347, 419, 541, 557, 809, 967, 1009, 1213, 1277, 1399, 1409, 1423, 1973, 2203, 2237, 2591, 2609, 2617, 2633, 2647, 2657, 3163, 3299, 4861, 4871, 4889, 4903, 4931, 5381, 7411
Offset: 1

Views

Author

Michel Planat, Oct 13 2011

Keywords

Comments

The sequence consists of the prime numbers p that are champions (left to right maxima) of the function |theta(p)-p|, where theta(p) is the Chebyshev theta function.

Crossrefs

Equivalent sequences for other indices: A197298(2), A197299(3), A197300(4).

Programs

  • Perl
    use ntheory ":all"; my($max,$f)=(0); forprimes { $f=abs(chebyshev_theta($)-$); if ($f > $max) { say; $max=$f; } } 10000; # Dana Jacobsen, Dec 29 2015

A196675 The n-th Chebyshev primes that are equal to the 2n-th primes.

Original entry on oeis.org

164051, 231299, 255919, 274177, 343517, 447827, 450451, 528167, 587519, 847607, 1209469
Offset: 1

Views

Author

Michel Planat, Oct 06 2011

Keywords

Comments

The Chebyshev primes (of index 1) are such odd primes that satisfy li[psi(p)]-li[psi(p-1)]<1 (sequence A196667), where li(x) is the logarithmic integral and psi(x) is the Chebyshev's psi function.
The present sequence lists the n-th Chebyshev primes that are equal to the 2n-th primes.
See A196674 for the number n at the zeros of the function a(n)-p_{2n}, where a(n) is the n-th Chebyshev prime and p_{2n} the 2n-th prime.

Crossrefs

Cf. A196674 (number n at the zeros of the function a(n)-p_{2n}, where a(n) is the n-th Chebyshev prime and p_{2n} the 2n-th prime).

A196673 Chebyshev primes that begin a record gap to the next Chebyshev prime.

Original entry on oeis.org

109, 113, 139, 317, 887, 1327, 1913, 3089, 8297, 11177, 29761, 45707, 113383, 164893, 291377, 401417, 638371, 1045841
Offset: 1

Views

Author

Michel Planat, Oct 05 2011

Keywords

Comments

The Chebyshev primes (of index 1) are such odd primes that satisfy li[psi(p)]-li[psi(p-1)]<1 (sequence A196667), where li(x) is the logarithmic integral and psi(x) is the Chebyshev's psi function.
The present sequence lists the Chebyshev primes that begin a record gap to the next Chebyshev prime.
See A196672 for the length of the gap.

Crossrefs

Cf. A002386 (primes beginning a record gap).
Cf. A182876 (Ramanujan primes that begin a record gap to the next Ramanujan prime).

A196674 Numbers n such that c(n) = p_{2n}, where c(n) is the n-th Chebyshev prime and p_{2n} the 2n-th prime.

Original entry on oeis.org

510, 10271, 11259, 11987, 14730, 18772, 18884, 21845, 24083, 33723, 46789
Offset: 1

Views

Author

Michel Planat, Oct 05 2011

Keywords

Comments

The Chebyshev primes (of index 1) are such odd primes that satisfy li[psi(p)]-li[psi(p-1)]<1 (sequence A196667), where li(x) is the logarithmic integral and psi(x) is the Chebyshev's psi function.
THe present sequence lists the zeros of the function c(n)-p_{2n}, where c(n) is the n-th Chebyshev prime and p_{2n} the 2n-th prime.
See A196675 for the Chebyshev primes satisfying a(n)=p_{2n}.

A196671 The number of Chebyshev primes (of index 1) less than 10^n, (n=1,2,...).

Original entry on oeis.org

0, 0, 42, 516, 4498, 414123
Offset: 1

Views

Author

Michel Planat, Oct 05 2011

Keywords

Comments

The Chebyshev primes (of index 1) are such odd primes that satisfy li[psi(p)]-li[psi(p-1)]<1 (sequence A196667), where li(x) is the logarithmic integral and psi(x) is the Chebyshev's psi function.
The present sequence lists the number of Chebyshev primes less than 10^n, (n=1,2,...).
The sequence suggests the density pi(x)/2 for the Chebyshev primes, where pi(x) is the density of primes.

Crossrefs

Cf. A196667.
Showing 1-9 of 9 results.